a2 United States Patent

State et al.

US009436451B2

10) Patent No.: US 9,436,451 B2
45) Date of Patent: *Sep. 6, 2016

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

GENERAL PURPOSE SOFTWARE
PARALLEL TASK ENGINE

Applicant: Transgaming Inc., Toronto (CA)

Inventors: Gavriel State, Ottawa (CA); Nicolas
Capens, Sint-Niklaas (BE); Luther
Johnson, Cambridge, MA (US)

Assignee: GOOGLE INC., Mountain View, CA
us)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/940,350

Filed: Nov. 13, 2015

Prior Publication Data

US 2016/0071305 Al Mar. 10, 2016

Related U.S. Application Data

Continuation of application No. 14/631,618, filed on
Feb. 25, 2015, which is a continuation of application
No. 13/597,403, filed on Aug. 29, 2012, now Pat. No.
9,019,283, which is a continuation of application No.
11/686,114, filed on Mar. 14, 2007, now Pat. No.
8,284,206.

Provisional application No. 60/781,961, filed on Mar.
14, 2006.

Int. CL.
GO6F 15/80 (2006.01)
GO6F 9/45 (2006.01)
(Continued)
U.S. CL
CPC ..o GOG6F 8/451 (2013.01); GOG6F 8/452

(2013.01); GO6F 9/3887 (2013.01); GO6F

9/4881 (2013.01); GOGF 9/5038 (2013.01):
GO6T 1/20 (2013.01); GO6T 15/005 (2013.01);
GO6T 17/10 (2013.01); GO6F 2209/483
(2013.01); GO6F 2209/5013 (2013.01);

(Continued)
(58) Field of Classification Search
CPC ..ccovvvrvvnennne GOG6F 2209/5017; GOGF 9/4881,

GOG6F 9/5038; GO6F 11/3404; GOGF 9/45508,;
GOG6F 9/5066; GO6T 2210/52
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,202,987 A 4/1993 Bayer et al.
5,452,461 A 9/1995 Umekita et al.

(Continued)
FOREIGN PATENT DOCUMENTS

EP 1569104 A2 8/2005
WO 2005006153 A2 1/2005

OTHER PUBLICATIONS

European Patent Office, “Extended European Search Report”, “from
Foreign Counterpart of U.S. Appl. No. 11/686,114”, Feb. 5, 2010,
pp. 1-7, Published in: EP.

(Continued)

Primary Examiner — Hau Nguyen
(74) Attorney, Agent, or Firm — Brake Hughes Bellermann
LLP

(57) ABSTRACT

A software engine for decomposing work to be done into
tasks, and distributing the tasks to multiple, independent
CPUs for execution is described. The engine utilizes
dynamic code generation, with run-time specialization of
variables, to achieve high performance. Problems are
decomposed according to methods that enhance parallel
CPU operation, and provide better opportunities for special-
ization and optimization of dynamically generated code. A
specific application of this engine, a software three dimen-
sional (3D) graphical image renderer, is described.

20 Claims, 17 Drawing Sheets

~

[A0

Task

Task
Pool

O TFY

|
el
l
|

L

Scheduler

Code Generator

Cache

—

"

‘ Primary Data

L—» CPU/Loop 0 =

a1 Job_| CPUjLoop 1 Te—38

CPU/Loop n F—3e

US 9,436,451 B2

(1)

(52)

(56)

Page 2
Int. CI. 7,747,842 Bl 6/2010 Goudy et al.
GO6F 9/48 2006.01 7,804,504 Bl 9/2010 Agarwal
GO6F 9/50 (2006 01) 8,141,076 B2 3/2012 Bates et al.
(2006.01) 8434086 B2 4/2013 Dodge et al.
GO6T 15/00 (2011.01) 2002/0073129 Al 6/2002 Wang et al.
GO6T 17/10 (2006.01)
OTHER PUBLICATIONS
GO6T 1720 (2006.01)
GO6F 9/38 (2006.01) International Searching Authority, “International Search Report and
US. CL Written Opinion”, Mailed May 31, 2007, pp. 1-9, Published in: WO.
CPC ... GOG6F 2209/5015 (2013.01); GO6F Crockett, “An Introduction to Parallel Rendering”, Dec. 29, 1997,
2209/5017 (2013.01); GO6T 2219/20 (2013.01) pp. 1-30.
Crockett, “Design Considerations for Parallel Graphics Libraries”,
References Cited 1994, pp. 1-22.)))
Folkegard et al., “Dynamic Code Generation for Realtime Shaders”,
U.S. PATENT DOCUMENTS Nov. 24, 2004, pp. 1-5.
Klette, “The m-Dimensional Grid Point Space”, 1985, pp. 1-12,
5,535,393 A 7/1996 Reeve et al. Publisher: Computer Vision, Graphics, and Image Processing 30.
5,768,594 A 6/1998 Blelloch et al. Kwok, Yu-Kwong, “High-Performance Algorithms for Compile-
6,075,935 A 6/2000 Ussery et al. Time Scheduling of Parallel Processors”, May 1997, pp. 1-197,
6,434,590 Bl 8/2002 Blelloch et al. Publisher: The Hong Kong University of Science and Technology.
6,480,876 B2 11/2002 Rehg et al. Palis et al.,, “Task Clustering and Scheduling for Distributed
g’;ég’ggz gé %gggi]S)}Tlui(’ Jr. et al. Memory Parallel Architectures”, “IEEE Transactions on Parallel
,760, aylor Py 2)
7.058.945 B2 6/2006 Ichinose ef al. and Dlstrlbuted Systems”, Jan. 1996, pp. 46-55, vol. 7, No. 1,
Publisher: IEEE.
7,103,881 B2 9/2006 Stone het al. le-Ti heduli istic f
7222218 B2 5/2007 Dutt et al. Sl et al., A Compile-Time Scheduling Heurlstlc. or Interconnec-
7,478,376 B2 1/2009 O’Brien et al. tion-Constrained Heterogeneous Processor Architectures”, “IEEE
7,522,168 B2 4/2009 Stenson et al. Transactions on Parallel and Distributed Systems”, Feb. 1993, pp.
7,587,439 Bl 9/2009 Onufryk et al. 175-187, vol. 4, No. 2, Publisher: IEEE.
7,598,953 B2 10/2009 Tarditi, Jr. et al. Yang et al., “Pyrros: Static Task Scheduling and Code Generation
7,633,506 B1 12/2009 Leather et al. for Message Passing Multiprocessors”, 1992, pp. 428-437.

U.S. Patent Sep. 6, 2016 Sheet 1 of 17 US 9,436,451 B2

ol
Primitives, vertices, attributes
|
ez ot loo
A Transform -~>} Light T —
e . "
‘ /4//' //x/ R T
B Assemble --—>l Project —»[‘Rasterize
- i—-;”fﬁy #gm,q,w____,?d/”‘* "
'
C | Shade —»| Buffer |—» Pixels
Figure 1 (Prior Art)
‘/200
A B C
— e 203’__.,_.__. — 204 206
iProcess | Process | _|Process ~
| Vertices l Primitives Fragments

Figure 2 {Prior Arf)

US 9,436,451 B2

Sheet 2 of 17

Sep. 6, 2016

U.S. Patent

! sm
ag—z udoondy [4of
. eleq Alewid
BIg—2 \% | doo/NdD
\a\wwm
.. 0 doo s} -
e 0 1/NdD qor TR %m\@\
elg ayoed
" _ l|nNpayog ¢ a.nBig
pe—z2t— L\ lojesausn) apon)
e
joogd \\
o_mn\v\\I\ e —
\ /
st pos— o 90g

US 9,436,451 B2

Sheet 3 of 17

Sep. 6, 2016

U.S. Patent

9 aunBiy
| 4olastuieied
oy
ot
\‘\ dajauleled
—F
ot? 2
L dojaulelded !
\ m
AL r
uoijelad(
o \\ o

G aunbig

s o 42]U10d eleq
ats
" 123U10d eljeg
e 2l
ats
. 4193U10d eleq
oew\.x\ ot
puewiLio) ;
L~ \\
\
o\ Afr

t aunbig

ASel

193Ul0d 9poD) ;

P

00}

\\

US 9,436,451 B2

Sheet 4 of 17

Sep. 6, 2016

U.S. Patent

L @inBbiy

1344ng apo)

o,

o0}

osb— T o¥t oSt
c#..li J23u104 2p0oD) IX33U0D) cosmLmn.__O
L \ N N
ey ¢t
N AR
giL—p 4 Y ’
123U104 3po)D IX33U0D uonesadp
1931ulod 3po) b Chll{elg uonyeladg
- e e
\\\ [Ra i =
ik ovk Tmr\-\ émw\\

U.S. Patent Sep. 6, 2016 Sheet 5 of 17 US 9,436,451 B2

820
28230
te et

o

Synthesize
Locate Static Code
Optimizer

Figure 8

g\0

OCnduempw.. 0

US 9,436,451 B2

Sheet 6 of 17

Sep. 6, 2016

U.S. Patent

g

..\

6 24nbig

Ovp oty
Ok},
J f B&r
i _ |
Ase] ASel Asel Asel
|
|
B jusauodwon Ag
D
B urewoq Ag !
\“\\ _
=7 o
d »
- uondun4g Ag
ot
> \Pl
\\ T
oib Silg

_”
e

Asel

U.S. Patent

; Perform dx4 matrix by 4x1 vector multiply

Sep. 6, 2016

Sheet 7 of 17 US 9,436,451 B2

1 All matrix/vector etements DP (64 bif) FP numbers
- Matrix rows and row ard vector elements numbered 0-3
s Vector elements 0,1,2,3 are denoted x, y,zw

; Pointer to input vectors in ESI {(AoS)

; Pointer to oulput vectars in EDE {A0S)
. Starting offset in EAX

. Offset mask in EDX

. Pointer to matrix (rows} in EBX

; Number of vectors to process in ECX

; Compute one output vector per iteration
mvmapy:

mvleop:

; Compute outpul x, y elements, first two row-vector dot products

movupd
movupd
movupd
movupad

movupd
movupd
movupd
movupd

mulpd
mulpd
mulpd
mulpe

haddpd
haddpd
haddpd

movipd

xmmd, {ebx-+0]

xmm5 [ebx+16]
xmmB, (ebx+32]
xmm7 [ebx+48]

xmm0,[esi+eax+0]
xmm1,[esiteax+18]
*mm2,xmm0
xmm3,xmml

xmmQ,xmmd
xmm 1 xmm5
mm2,xmme
xmm3,xmm7

xmmQ,xmm1
Xmm2,xmm3
0, xmm2

[edi+eax+0; xmm0

1 0, 1 elements of row 0
: 2, 3elements of row O
. 0, 1 elements of row 1
2, 3 elements of row 1

Z, W

. copies

cxmm: (2, b)Y rowQ{0]"x, row0{1]*y
cxmm: (c, d): rowD[2]*z, rowd{3}"w
cxmm2: (e, f); row1[0Fx, row1[1]*y

s xmm3 (g, h) rowd [2]*z, row1[37"w
;xmmi: (a+h, ctd)

cxmmz2: (e+f, g+h)

s xmm{: (atb+etd, e+f+gth)

Ley)

; Compute cutput z, w elements, fast fwo row-vector dot products

. Update poiniers and count, loop or refurn

mevupd
movupd
movupd
movupd

movupd
movupd
raovupd
movupd

raulpd
mulpd
mulpd
mulpd

haddpd
hadepd
hadcpd

rmovupd

add
and
loop
ret

xmmd, febx+G4]
xmm$,febx +80]
xmme,febx+96]
xmm7,[sbx+112]

xrimO, [esi+eax+0}
xmm1,[esiteax+16]
xmm2,xrmim0
xmma3,xmml

xmm,xmm4
xmim 1, xmm5S
xmm2,xmm6
xmm3,xmm7

xrn0,xmnd
xmm2,xmm3
xmmQ,xmm2

ledi+eax+15], xmm)

eax,32
eaxedx
mvioop

1 elements of row 2
tements of row 2
lements of row 3
lements of row 3

]

1

O MO
© ® D @

12,3
;0,01
12,3

N
=~

; copies

s xmmO: (a, b): row2{0] x, row2[1]*y
s xmm (¢, d): row2[2]*z, row2{3]"'w
s xmm2: (e, f): row3[0]™x, row3[1]*y

s xmm3; (g, h): row3[2]*z, row3[3]"w
;xmm0. {a+b, ctd)

i xmm2 {e+f, g+h}
s xmmQ; {athiotd, etf+g+h)

iz, w)

; 32 instructions, 12 memory reads, 2 memory writes, par vector per CPU
; 2 CPUs: 18 instructions, & memory reads, 1 memory write, per vector
; 4 CPUs: 8 instructions, 3 memory reads, .5 memory write per vector

Figure 10. Full-datum Matrix-vector Multizlication with SSE3 Instructons

U.S. Patent Sep. 6, 2016 Sheet 8 of 17 US 9,436,451 B2

; Perform 4x4 matrix by 4x1 vector multiply

» All matrix/vector elements DP {64 bit) FP numbers

; Matrix rows and row and vector elements numbered 0-3
s Vector elements 0,1,2,3 are denoted x,y,zw

. Pointer to input vectors in ESI (A0S}

: Pointer to output vectors in EDI (AoS)
; Starting offset in EAX

; Offset mask in EDX

: Pointer to matrix {rows) in EBX

: Number of vectors to process in ECX

; Compute x, y elements of one vector per iteration
mvmpy:

; Load requisite mairix rows ahead of locp

movupd xmmd [ebx+(] ; 0, 1 elements of row 0
movupd xmm5,[ebx+16] . 2, 3 elements of row 0
movupd xmmb,[ebx+32] 10, 1 elements of row 1
movupd xmm7 [ebx+48] ; 2, 3 elements of row 1

mvioop:

; Compute output x, y efements, first two row-vector dot products

movupd xmmdQ,jesi+eax+{] TX Y

movupd xmm,{esiteax+18] VZLW

mevipd xmm2,xmmo

movupd xmm3,xmm1 ; copies

muipd xmm0,xmmé4 s xmm0: (g, b); rowQ[0]x, rowQ[17"y
muipd xmm1,xmm5 s xmmt (g, d): row0i2]*z, row0[3]*w
muipd xmm2,xmmé s xmm2: {e, f): row1[0}1x, row1[1]*y
muipd xmm3,xmm7 s Xxmma3: {g, h¥ row1[2]*z, row1[3]"w
haddpd xmmG,xmm1 ;xmm0: {a+h, c+d)

haddpd xmm2 xmm3 s xmm2: {e+f, g+h)

haddpd xmm@,xmm2 s xmmQ; {a+b+ctd, e+f+g+h)
movupd [editeax+0],xmm0 V(v

. Update pointers and count, loop or return

add eax,32
and eax,edx
loop mvloop
ret

;12 instructions, 2 memory reads, 1 memory write, per half-vector per CPU
: 2 CPUs: 12 instructions, 2 memaory reads, 1 memaory write per vecior
; 4 CPUs: 6 instructions, 1 memory read, .5 memory write per vector

Figure 11. Half-datum Matrix-vector Multiplication with SSE3 instructions

U.S. Patent Sep. 6, 2016 Sheet 9 of 17 US 9,436,451 B2

; Perform 4x4 matrix by 4x1 vector multiply

1 All matrixfvector elements DP (64 bit) FP numbers

; Matrix rows and row and vector elements numbered G-3
s Vector elements 0,1,2,3 are dencted x,v,z,w

. Pointer {o input vectors in ESE (AcS)

: Pointer {0 output vectors in EDI (AoS)

; Starting offset in EAX

. Offset mask in EDX

; Peinter to matrix (rows) in EBX

; Number of vectors to process in ECX

; Compute x, y elements of one vector per iteration

. Specialize with knowledge that only element 1 of row O,
; and element 2 of row 1, are nonzero

mvmpy:
; Load reguisite matrix rows ahead of loop
movupd xmmd, jebx+0} ; 0, 1 elements of row 0

These wo half-rows are all zere

; movupd xmm&, [ebx+16] ; 2, 3 elements of row 0
; movupd xmmé, [ebx+32) ; 0, 1 elements of row 1
movupd xmm7,[cbx+48] 1 2, 3 elements of row 1

mvloop:

; Compute oulput x, y elements, first two row-vector dot products

movupd xmm?O,[esi+eax+0] VXY

movupd xmm1,[esiteax+16) Z, W
; These copies are no longer necessary

movupd xmm2,xmm0
; movupd xmm3,xmmi ; copies

mulpd xmm0,xmm4 s xmmQ: (a, bY): rowQ[01"x, rowO[11"y
; These two products are all zere
; mulpd xmm1,xmmbS ;xmm (e, d): row0[2]"z, rowDf3]'w
; mulpd xmm2,xmmé s xmim2: (e,) rowd[07x, rowt[1}y

; This instruction can now use xmmf1, it is no longer destroyed
; mulpd xmm3,xmm7 s xmm3: (g, h): row1[2) z, rowi[3]*w
mulpd xmmi,xmm?7 ;xmmi (g, h): row1{2]*z, rowi[3]'w

These three instructions can be simplified - only preducts b and g are nonzere

X haddpd xmmoxmmi ; xmm0: (a+b, c+d)

; haddpd xmm2,xmm3 .xmm2 (e+f, g+h)

: haddpd xmm0,xmm2 ; xmmQ; (a+b+c+d, e+f+g+h)
addpd xmm1,xmm0 s xmmt: (g, b)
shufpd xmmO,xmm1,1 ; xmm0o: (b, 9)
movupd [edi+eax+D}xmm0 Y]

: Update pointers and count, loop or retum

add sax,32

and eax,edx
loop mvicop
ret

- 7 instructions, 2 memory reads, 1 memory write, per half-vector per CPU
;. 2 CPUs: 6 instructions, 2 memory reads, 1 memory write per vector
4 CPUs: 3 insfructions, 1 memory read, .5 memory write per vectcr

Figure 12. Specialized Haif-datum Matrix-vector Multiplication with SSE3 instructions

U.S. Patent Sep. 6, 2016 Sheet 10 of 17 US 9,436,451 B2

i Parform 4x4 matrix by 4x1 vector multiply

. All matrix/vector elements DP (64 bit} FP numbers

: Matrix rows and row and vector elements numbered 0-3
: Vecior elements §,1,2,3 are denoted x,y,z,w

: Pointer to input vecteors in ESI (AoS)

: Pointer to output vectors in EDI (AoS)
; Starting offset in EAX

. Offset mask in EDX

; Pointer to mairix (rows) in EBX

» Number of vectors to process in ECX

: Compuie x, y elements of one vector per iteration

: Specialize with knowledge that only eilement 1 of row 0,
; and element 2 of row 1, are nonzero

mvimpy:

; Load requisite matrix rows ahead of loop

movupd xmm6,[ebx+0] ;0,1 elements of row 0
movupd xmm7,[ebx+48} ; 2, 3 elements of row 1
addpd xmm6,xmm7 » rowi[2], rowO([1]
shufpd xmm7,xmm8,1 ; rowD{1], row1[2]

mvloop:

; Compulte output x, y elements, first two row-vector dot producls

movupd xmm0 fesi+eax+8] Y. Z
muipd xmm0O,xmm7 s xmmO: rowO[1]*y, row1[2]*z
movupd [edi+eax+0hxmm0 06 Y)

; Update pointers and count, loop or retumn

add eax, 32
and eax,edx
loop mvioop
ret

; 3 instructions, 1 memory reads, 1 memory write, per half-vector per CPU
. 2 CPUs: 3 instructions, 1 memory reads, 1 memory wrile per vector
;4 CPUs: 1.5 instructions, .5 memory read, .5 memaory write per vector

Figure 13. Optimal Hall-datum Speciatized Matrix-vector Multiplication with SSE2 Instructions

U.S. Patent Sep. 6, 2016 Sheet 11 of 17 US 9,436,451 B2

. Perform 4x4 matrix by 4x1 vector multiply

; All matrixfvector elements DP {64 bi{) FP numbers

; Matrix rows and row and vector elements numbered 0-3
: Vector elements 0,1,2,3 are denoted x,y,z.w

; Pointer to input vectors in ESI (AoS)

; Pointer to output vectors in EDI (AoS)
: Starting offset in EAX

, Offset mask in EDX

; Pointer to matrix {rows) in EBX

; Number of vectors to process in ECX

; Compute x, y elements of four vectors per ileration

: Specialize with knowledge that only element 1 of row 0,
»and elfement 2 of row 1, are nonzero

mvmpy:

; Load requisite matrix rows ahead of loop

movupd xmms,[ebx+0] ; 0, 1 elements of row O
movupd xmm7,[ebx+48] ; 2, 3 elements of row 1
addpd xmm8,xmm7 ; row1{2], row0[1]
shufpd xmm7.xmms, 1 s row0i1], row1(2]

mvloop:

: Compute output x, v elements, from first two row-vector dot producis

movupd xmm0Q,[esi+eax+8) ;y0, z0
movupd xmm1,[esi+eax+40] syt 2t
movupd xmm2,[esiteax+72) Y2, Z2
movupd xmm3,[esi+eax+104] 3, 23
mulpd xmmO0,xmm? ;s xmim0: rowO[11*v0, row1[2}*z0
mulpd xmm1,xmm?7 s xmm 1z rowQ[11y 1, row1[2}"z1
mulpd xmm2,xmm7 ; xmm2: rowQ[1]ye, rowt[2]*z2
mulpd xmm3,xmm7 ; xmm3: rowQ[17 y3, row1[2]23
movupd [editeax+0],xmm0 1 {x0, y0)
movupd [edi+eax+32],xmm1 C(x1, 1)
movupd [edi+eax+64],xmm2 (%2, y2)
movupd [edi+eax+96],xmm3 s (%3, ¥3)

; Update pointers and count, lcop or return

add eax, 128

and eax,edx
loop mvloop
ret

; 12 insfructions, 4 memory reads, 4 memory writes, per four half-vectors per CPU
;2 CPUs: 3 instructions, 1 memory reads, 1 memaory write per vector
.4 CPUs: 1.5 instructions, .5 memory read, .5 memory write per vector

Figure 14. Pipelined Half-datum Optimal Specialized Matrix-vector Multiplication with SSE2 Instructions

US 9,436,451 B2

Sheet 12 of 17

Sep. 6, 2016

U.S. Patent

’ Ilnunlll-lllnlanul-l-I‘:-&lllullu-lllI..llil-llnll..:Ill-fll*ll\llllInﬂlunlllllnn-llll--n

Gl Bi4

yl)

||||||||||||||||||||||| ’» \ _\lllulll....l||(4|ltzl|||||_
mx%\\%\ //z/ e \. Qmm\\s,

AR/
A X

@ & & 8 OO0 0 0 O QO

o @ & & 0O

U.S. Patent Sep. 6, 2016 Sheet 13 of 17 US 9,436,451 B2

Fig. 16

aett

A 4

o
o
o
O 40
1603—=1—
0

1601=
1604—=]—
1605 —=]

US 9,436,451 B2

Sheet 14 of 17

Sep. 6, 2016

U.S. Patent

JARN L

vL vl
gL vl
Gl 1 el
9L M €l
oL 1 €L
Ll ¢l
LV ¢l
8L 7 ¢t
gL L1
6L 7 L
6L [V1
9l m Ol
€l ok
0L Ol
c0LL 1041

€0L1L

U.S. Patent

Sep. 6, 2016 Sheet 15 of 17

US 9,436,451 B2

Fig. 18

US 9,436,451 B2

ey moi4 doa gop gz 24nbig 1eyn mold weiboid wep 61 a.ndl4
e IN>T e b+=1 = pi6l
gop oQg P T ——— 2—£002 ON
s o)

sal

yojedsiq e GOG L
¢ gor | 200e
—» gof ssodwo) 206%
i

isonbay aye |« 1002 8ped SjRiBusY L0681

Sheet 16 of 17

Sep. 6, 2016

U.S. Patent

QN ¢
\@ — 9061
saj

saA

=G OG L

SBA
L« ¢)senbay
. ON
>

0=1 e Zee——wn 061

sdooqqoruRlg T &E—— 06}

I

yse | ndu g ~T 2| L6 ERNII] ..Tllﬁtiromr

h 2

US 9,436,451 B2

Sheet 17 of 17

Sep. 6, 2016

U.S. Patent

HEYD moj4 doo] gop sleusslly z& 2.nbiyg

aN

gor og 99— =———1022

SAA
(e 9027
urep pislA Hmrre GOZZ
ang uigiy 1D P H(ZT
Uiy UIBiGO e €0CT

F

sdoocjgopuelg | —=——20Ed
sy | ——102<

ueyn mol4 weliboid-gng uie sreuls)ly “Lg sanbig

4

h

P
&

qor ssoduwion

“——G0LZ

B8P0 BRIUSD)

oza

voLe

¢y sy2ed

ON

ON

!

SOA

= —¢0l¢

| E— 0l e

B 41 ¥4

US 9,436,451 B2

1
GENERAL PURPOSE SOFTWARE
PARALLEL TASK ENGINE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is filed under 37 CFR 1.53(b) as a
continuation application of U.S. patent application Ser. No.
14/631,618, filed on Feb. 25, 2015, which is a continuation
of U.S. patent application Ser. No. 13/597,403, filed on Aug.
29, 2012, now U.S. Pat. No. 9,019,283, which is a continu-
ation of U.S. patent application Ser. No. 11/686,114, filed
Mar. 14, 2007, now U.S. Pat. No. 8,248,206. This applica-
tion claims priority under 35USC§120 or 365(c) of U.S.
patent application Ser. No. 11/686,114, filed Mar. 14, 2007,
and entitled “GENERAL PURPOSE SOFTWARE PARAL-
LEL TASK ENGINE”, which claims priority under
35USC§119 of U.S. Provisional Application No. 60/781,
961, filed Mar. 14, 2006, the specifications of which are
hereby incorporated herein by reference in its entirety.

FIELD

The present description relates to the field of parallel
processing of tasks in computer system. The description also
relates to the field of software 3D image rendering.

BACKGROUND

Parallel Processing. Using multiple computer CPUs
simultaneously or in parallel, to solve a single problem, or
execute a single program, and by doing so, reducing the time
required, is an old and well-studied idea. In fact parallel
processing is an entire sub-discipline of computer science.
Any system for accomplishing parallel solution of a problem
or execution of a program has two components: A ‘problem
decomposition’ strategy or scheme or method, or combina-
tion of methods, and an execution vehicle or machine or
system. In other words, the problem must be broken down
into multiple parts, and then these parts must be distributed
to and executed by the multiple CPUs. Problems can some-
times be broken down into parts that are independent, which
may be pursued completely in parallel, with no interaction
between, or no specific ordering of, sub-programs to be
executed on the CPUs required. Sometimes problem decom-
positions have inter-dependent parts, implicit in the prob-
lem, or created by the decomposition.

Problem decomposition methods can be sorted into two
large categories: decomposition by domain, where the func-
tion to be performed remains the same, and the data to be
processed is distributed to multiple CPUs, and decomposi-
tion by function, where the work to be done on each datum
is broken up into sub-functions, and each CPU is responsible
for performing its sub-function on all the data. Both types of
decomposition can be achieved through two major means—
implicit or problem-aware, specific, ad hoc means, built into
the system, or ‘algorithmic decomposition’. In algorithmic
decomposition, the original program, or a representation of
that program, which encapsulates the single-CPU, sequen-
tial semantics of a solution to the problem, is decomposed
into multiple programs. Most interesting problem decom-
positions are a combination of both types of decomposition,
using elements of both means of decomposition. The result-
ing CPU sub-programs may be completely independent, or
‘perfectly parallel’, or they may be organized into succes-
sive, overlapping, sub-functional stages, as in an assembly

10

15

20

25

30

35

40

45

50

55

60

65

2

line or ‘pipeline’, or there may be any number of depen-
dencies and independences, in any sort of dependency
graph.

Systems of parallel execution of the sub-programs can be
classified in terms of their similarity to two opposing mod-
els—those that have a central, master unit directing the flow
of work, and those that are modeled as a de-centralized
network of independent processors. Of course, many sys-
tems lie on the line somewhere in between these polar
extremes.

As stated above, the field of parallel processing is rich in
research, and there is much prior art. However there is as yet
no general solution for all problems, and every parallel
processing system is better at some sorts of problems than
others. There are yet many problems with unexploited
potential for parallelism, and many improvements may be
made to parallel processing systems for different classes of
problems.

Dynamic Code Generation. ‘Dynamic code generation’ is
a technique whereby code is compiled or prepared for
execution dynamically, by a program which will need to call
or invoke it. This code is often created at the last possible
moment, or ‘just-in-time’. If the code is created only when
it is about to be used, it will not be generated if it is never
used, and this can represent savings in compilation time and
program space. After compilation, the new routine can be
retained, or cached, in case it is needed again. The required
routine may be called under a particular set of prevailing
conditions or with specific arguments that suggest a simpler,
more efficient, custom compilation unique to that invocation
or set of conditions. In that case, the dynamic compiler
might create a special version of the code to be used only
under those conditions or with a similar invocation.
Dynamic compilation may also allow superior general-
purpose optimizations due to facts unknown at the time the
program in question was specified, but known at the time of
execution.

Dynamic code generation has often been used in envi-
ronments where there is no obvious ‘program’ to be com-
piled, where a fixed function is replaced by a run-time
generated, run-time specialized and optimized routine, in
order to gain improved performance over statically com-
piled, necessarily general code. Because the ‘program’ is
often not represented in formal semantic terms, or is repre-
sented only by the previously compiled, machine code for
the function to be replaced, and because of the need to
produce new code quickly in a run-time environment,
dynamic code generators and optimizers are frequently
simple affairs, exploiting high-leverage, problem-aware ad
hoc methods or tricks to achieve their ends. In this case, the
more high-leverage, informal or implicit, problem-specific
information that can be imparted to these code generators,
the better they can potentially perform.

One application in which parallel processing and dynamic
code generation may be combined is a three-dimensional
graphical image rendering system, or ‘graphics pipeline’.

Definition of Graphics Pipeline. Three dimensional (3D)
computer graphics display programs simulate, on a two
dimensional display, the effect that the display is a window
into a three dimensional scene. This scene can contain
multiple 3D objects, at different apparent distances from the
window, and the window has a viewpoint or camera angle
with respect to the scene and its objects. Objects can be
colored and textured, and the objects can seem to be
illuminated by light sources of different types and color.

A software program that models and displays 3D objects
can be divided into two parts: an ‘application program’

US 9,436,451 B2

3

which relies on a set of high-level functions to manipulate
and display graphical data, and a graphics software library
that provides these functions

3D objects consist of geometric shapes, at certain posi-
tions in the 3D world, with certain properties or attributes.
These objects are defined and maintained by the application
program, as a collection of geometric primitives, and then
these primitives are defined and described to the graphics
library, which draws, or renders them onto the two dimen-
sional (2D) display, with all necessary positioning, orienta-
tion, perspective scaling, coloring, texturing, lighting, or
shading effects performed on each primitive as it appears in
the window view. This represents a series of processing
steps on geometric primitives and their component data, as
they progress from spatial coordinate and attribute definition
to final 2D picture element (pixel) form on the screen. A
software and hardware system that accomplishes this draw-
ing of geometric primitives is called an image renderer, or a
rendering ‘engine’, and the series of processing stages used
is termed the ‘graphics pipeline’.

Definition of terms, description of pipeline processing
stages. FIG. 1 shows a generic graphics pipeline 100 for a
rendering engine according to the prior art. Different ren-
derers support different options and features, and use various
techniques to perform the required processing at each stage.
Operations and stages can also be, explicitly or implicitly,
performed in different orders in different implementations,
while preserving the same apparent rendering model. Stages
or portions of stages may be performed to varying degrees
by either software or hardware. There are also many differ-
ent groupings or organizations of the component operations
into pipeline stages for the purposes of exposition, and the
terminology in the art is not uniform from one implemen-
tation to another.

The following definitions are used in the descriptions of
the graphics pipelines below:

Primitive: a collection of points in 3D space forming a
point, a line, a triangle, or other polygon, with associated
properties.

Vertex: one of the points defining a primitive.

Object: a collection of primitives.

Normal: for a point on the surface of a primitive, a vector
defined to be normal or perpendicular to the surface of the
primitive at that point.

Model space: a 3D coordinate space in which an indi-
vidual object is defined, apart from a 3D scene in which it
may be placed.

World space: the coordinate space of the 3D scene.

Viewport or Camera: the window, with its associated
orientation, position and perspective relative to the scene,
through which the 3D scene is apparently being viewed.

View space: the coordinate space of the 3D scene, as seen
from the viewpoint of the camera.

Face: a planar polygon in an object, either front-facing
(toward the camera), or back-facing (away from the cam-
era).

Model Transformation: scaling and placing an object in
the scene, transforming its vertex coordinates from model
space to world space.

Viewing transformation: translating (moving, position-
ing), and rotating (orienting) vertices to account for viewing
position and orientation with respect to the scene, transform-
ing vertex coordinates from world space to view space.

Material: light reflectivity properties.

Texture, or texture map: an image, which may be designed
to visually mimic the surface properties of a physical
material.

20

25

30

40

45

55

4

Lighting: the interaction of light sources of different types
and colors, with colors and materials and textures, at verti-
ces.

Primitive assembly: determining primitives as defined by
the application, and gathering their component vertex coor-
dinates and attributes, in preparation for further processing.

Clipping: removing primitives or portions of primitives
which are not visible, or fall ‘outside’ the field and depth of
view of the viewport.

Projection Transformation: creating the 2D projection of
points in view space, onto the plane of the viewport or “film”
of'the camera, transforming spatial coordinates of vertices to
2D display locations and depths.

Culling: removing (deciding not to render) a face of a
polygon.

Vertex Processing: vertex coordinate transformations, and
lighting of vertices.

Frame buffer: a 2D memory array containing bit patterns
encoded in a form which directly represents the colored dots
or rectangles on the computer’s hardware display screen.

Pixel: a single colored picture element (dot or rectangle)
in the frame buffer.

Fragment or pre-pixel: a single colored picture element,
located in a 2D image corresponding to the frame buffer,
before it is written to the display frame buffer.

Rasterize: to choose the fragments in the 2D projected
image that correspond to the outline and/or interior of a
primitive.

Shading, or Fragment Shading: determining the color of
a fragment, taking into account vertex colors, lighting, and
textures.

Buffer or Raster operations: raster (pixel) operations done
on fragments after shading, as they are written to pixels in
the frame buffer, or to determine whether or not they should
be written, according to a number of tests.

Fragment processing: fragment shading and buffer opera-
tions on starting with fragments, and yielding pixels.

A detailed description of the stages in the pipeline of FIG.
1 follows:

Transform 102: All vertices are transformed from model
space to world space, and then transformed to view space,
i.e., translated and rotated correctly in order to account for
the viewpoint.

Light 104: Vertices are lighted from different sources, and
the resulting color is dependent on the source color and
intensity, incidence angle of a directional source with the
vertex’s normal, distance of the source, the reflectivity of an
associated material, and the original vertex color. If the
primitive is a polygon, and a texture is to be applied to the
face, texture map coordinates are assigned to the vertices.

Assemble 106: Vertices are assembled into primitives, as
they have been defined by the application program.

Project 108: Primitives are clipped to conform to the field
and depth of view, the ‘viewing volume’. They are then
projected, possibly with perspective, onto the plane of the
viewport, yielding a 2D image, with each vertex position
now represented as a 2D display location and a depth.
Polygon faces to be culled are discarded, and not processed
further.

Rasterize 110: Primitive fragments corresponding to out-
lines and interiors are identified in the 2D image. ‘Anti-
aliasing’, or modification of fragment colors at outlines of
primitives in order to make the outline appear smoother, is
done at this stage.

Shade 112: Primitive fragments are shaded, or colored,
according to one of several possible methods, by either
interpolating the colors at the vertices of the enclosing

US 9,436,451 B2

5

primitive or by interpolating from vertex normals and re-
lighting the fragments individually. If a texture is to be
applied, texture map coordinates are interpolated and
assigned to each fragment, and the indicated texture color is
mixed in to yield the shaded fragment color.

Buffer 114: As fragments are converted to pixels and
written to the frame buffer, several tests are performed in
order to determine whether or not they should be written, in
order to allow displaying the image inside a stencil, or
window, or rectangle. Hidden surface removal may also be
done by recording the depth, or ‘z’ value of a pixel in a
‘z-buffer’, as the pixel is written to the 2D frame buffer. As
new pixels are written to the frame buffer, their depth or z
value is compared to the z-buffer value of the pixel previ-
ously written at that 2D location. If the new pixel is closer
to the viewport, it is written, if it is further away than
(behind) the old pixel, it is not written.

Pixel colors may also be blended with the color of pixels
already in the frame buffer, depending on the opacity of
those colors, in order to simulate transparency of nearer
surfaces. Pixel colors may be ‘dithered’ or modified based
on their near neighbors as a way of smoothing color tran-
sitions or simulating shades. Finally, source and destination
pixels in the frame buffer may be combined according to one
of several logical operations performed as part of the block
transfer (BLT) to the frame buffer.

Another view of a graphics pipeline according to the prior
art is seen in FIG. 2. In this pipeline 200, there are just three
stages: ‘Process Vertices’ 202, ‘Process Primitives’ 204, and
‘Process Fragments’ 206. FIG. 1 ‘Transform’ (model and
view transformations) 102, and FIG. 1 ‘Light’ 104 (lighting)
are collapsed into FIG. 2 ‘Process Vertices’ 202, yielding
lighted, 3D position-transformed vertices. FIG. 2 ‘Process
Primitives’ 204 combines FIG. 1 ‘Assemble’ 106 (primitive
assembly), FIG. 1 ‘Project’ 108 (clipping, projection, and
culling), and FIG. 1 ‘Rasterize’ 110 (rasterization) yielding
visible fragments within the 2D image corresponding to
primitive outlines and/or interiors. FIG. 2 ‘Process Frag-
ments’ 206 incorporates FIG. 1 ‘Shade’ 112 (fragment
shading and texture application to color fragments), and
FIG. 1 ‘Buffer’ 114 (raster or buffer operations), finally
yielding pixels 116 in the frame buffer.

In typical practice, aspects of the ‘Project” 108 computa-
tion may be split across vertex processing and primitive
processing. All vertex position transformations, including
those due to projection onto multiple depth 2D planes, can
be done in ‘Process Vertices’, while those aspects of pro-
jection necessary for clipping and final mapping to the
viewport are done in ‘Process Primitives’. This may be done
in order to group all like position transformations, involving
matrix arithmetic on vertex vectors, into one phase. How
parts of the logical graphics computations are actually
effected in which stages is not of primary importance. More
important is that each of the three large stages is concerned
with processing associated with one major data type: either
vertices, or primitives, or fragments.

Existing Practice in Graphics Pipelines.

SIMD CPU instructions. Many computer CPUs now
incorporate SIMD (single-instruction-multiple-data) types
of instructions, which can perform certain single operations
on multiple data at once. These instructions have been
geared toward common low-level operations in the graphics
pipeline, and software graphics library implementations can
show dramatically improved performance through their use.
It is important however, that the library organizes its com-
putations so that data is available and staged accordingly, to
take best advantage of these SIMD capabilities.

10

15

20

25

30

35

40

45

50

55

60

65

6

Multi-core CPUs. CPUs are now available with multiple
instruction-processing cores, which may run independently
of each other. If tasks in the graphics pipeline can be divided
and scheduled so that many different operations can be done
in parallel, independent threads of execution, this can pro-
vide a geometric speed increase over a single program that
must perform all the operations in sequence. Multi-core
techniques have heretofore seen limited application in soft-
ware graphics pipeline implementations.

Hardware GPU functions. Many of the functions of a
graphics pipeline can be performed by the hardware graph-
ics processing unit, or GPU. GPUs support many fixed-
functionality operations, and many also have the capability
of running programs locally, independent of the computer
CPU. Hardware GPU functions or GPU programs may be
considerably faster than their main CPU software counter-
parts.

Shader Programs. ‘Vertex shaders’ or ‘vertex programs’,
can optionally be supplied to the graphics library to perform
some or all of the functions of vertex processing. Likewise,
‘Fragment Shaders’ or ‘Pixel Shaders’ can take over much of
the job of fragment processing. These programs can be
executed by the computer’s CPU, or they may run in part or
entirely on the hardware GPU. Several standards and lan-
guages exist for these vertex and fragment shader programs,
which are then compiled for execution on CPU and/or GPU.

Programmable vertex and fragment processing allow
flexibility and specialization in the performance of these
operations, allowing new functionality, or higher perfor-
mance. Support for programmable shaders is a required
feature in several graphics library definitions, and many
compatible implementations exist. However, the compila-
tion of the shader program, the quality of the resulting code,
and the use of CPU and GPU resources and their effects on
performance, differ considerably from one implementation
to another.

Dynamic code generation. Dynamic code generation is
used in various ways in many aspects of existing fixed-
function and programmable graphics pipelines, but genera-
tion and caching policies, language translation techniques
and optimizations, and effectiveness and scope of utility
vary with the implementation.

For example, in some graphics libraries, dynamic code
generation is limited to the compilation of application-
provided vertex and fragment programs. Or, if dynamic code
is also used to accelerate fixed graphics pipeline functions,
there may be some elements of the graphics pipeline imple-
mentation which must be implemented in a static fashion, or
by separate dynamically created functions, to leave those
stages ‘open’ for replacement by either application-provided
or GPU-supported functions. The ideal case is to have all
functions of the graphics pipeline supported by dynamically
created code optimized for the specific CPU and GPU
capabilities of the computer system.

SUMMARY

The description relates to the general prosecution of work
on multiple, independent computer CPUs, and the design of
systems, methods, and policies, to accomplish that work
efficiently, with respect to time and resources.

One application of such systems is the task of rendering
(drawing) to a computer display a three dimensional image
represented by an abstract collection of graphical data, and
the many processing steps required to appropriately reduce
this data to a two dimensional color picture. The description
addresses this application, as well as others.

US 9,436,451 B2

7

There is described a design for a software Parallel Task
Engine which combines dynamic code generation for pro-
cessing tasks with a scheme for distributing the tasks across
multiple CPU cores. Dynamic code generation provides the
best possible per-processor performance, and fully parallel
execution provides the best use of multiple CPUs. However,
when combined in the right way, the two techniques can
have a beneficial ‘multiplicative’ effect as well—because the
processing routines are created for certain sub-tasks of the
larger problem or operate only on particular subsets of data,
they can be even more specifically or efficiently coded than
before, as they operate under more specific circumstances,
or are less constrained by processor resources. The result is
better performance than would be expected from the sum of
the benefits of these two practices, applied independently—
or in other words, a ‘super-linear’ acceleration when mul-
tiple CPUs are applied to the problem.

Application to Graphics Processing. Methods of dynamic
code generation can be used to create all the software
routines necessary to execute the stages of a graphics
pipeline. These routines can be more efficient than code that
is statically compiled in advance, because they can take
advantage of facts that are not known until the time of
execution, and because they can be created specifically for
the job at hand, and need not satisty the full range of
requirements that their interface and surrounding state might
demand of a single, static routine.

New computers have multiple, independent CPU cores
that can execute software routines in parallel. The workload
of a graphics processing task can be distributed across
multiple CPUs, achieving performance acceleration that is
linear with the number of CPU cores employed. When the
parallel task engine is applied to the problem of graphics
processing, in other words, configured as a graphics pipeline
engine, it can provide dynamically generated code for all
stages of computation, and exploit specific task decompo-
sitions that take best advantage of the strengths of dynamic
code generation and multiple CPU resources applied to
graphics processing, resulting in high speed image render-
ing.

According to one aspect, there is provided, In a computer
system having a processor, the processor having multiple
processing cores, a parallel task engine for performing tasks
on data, the parallel task engine comprising: an input for
receiving tasks; a scheduler for decomposing the tasks at
run-time into one or more new tasks; and a run-time
dynamic code generator for generating, for the new tasks,
operation routines, the run-time dynamic code generator
comprising a dynamic compiler, the dynamic compiler being
adapted to output the operation routines for execution,
wherein the scheduler further is for distributing and assign-
ing the new tasks to multiple processing cores for perform-
ing in parallel the new tasks on at least a portion of the data
by executing the dynamically compiled operation routines;
and wherein at least a portion of the scheduler operations of
decomposing the tasks and the distributing and assigning the
new tasks are dependent on operating characteristics of the
processor.

According to another aspect, there is provided in a com-
puter system having a processor, the processor having
multiple processing cores, a method for performing tasks on
data, the method comprising: receiving tasks; decomposing
the tasks at run-time into one or more new tasks; generating
for the new tasks at run-time, operation routines, the gen-
erating comprising outputting the operation routines for
execution using a dynamic compiler; distributing and
assigning the new tasks to multiple processing cores; and he

40

45

8

multiple processing cores performing the new tasks in
parallel on at least part of the data by executing the operation
routines; wherein at least one of the decomposing the tasks
and the distributing and assigning the new tasks are depen-
dent on operating characteristics of the processor.

According to another aspect, there is provided, in a
computer system having multiple processing cores, a
method for performing tasks on data, the method compris-
ing: decomposing the tasks at run-time to create new tasks;
dynamically compiling code for the new tasks at run-time
using a dynamic code generator comprising a dynamic
compiler; distributing and assigning the new tasks to two or
more processing cores for executing the dynamically com-
piled code, in parallel, for performing the new tasks on at
least a portion of the data; wherein at least one of the
decomposing the tasks and the distributing and assigning the
new tasks are dependent on operating characteristics of the
processor.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features of the present application will become
apparent from the following detailed description, taken in
combination with the appended drawings, in which:

FIG. 1 is flow diagram depicting a generic graphics
pipeline according to the prior art;

FIG. 2 is a flow diagram depicting another, simpler
graphics pipeline organization according to the prior art;

FIG. 3 is a block diagram depicting a parallel task engine
according to an embodiment;

FIG. 4 is a block diagram showing the composition of a
job according to an embodiment;

FIG. 5 is a block diagram showing the composition of a
task according to an embodiment;

FIG. 6 is a block diagram showing the composition of a
command according to an embodiment;

FIG. 7 is a block diagram showing the cache as a
collection of entries, and the composition of those entries
according to an embodiment

FIG. 8 is a block diagram depicting the components of
code generation according to an embodiment;

FIG. 9 is a block diagram depicting task (problem)
decomposition according to an embodiment;

FIG. 10 is the source code for a routine which performs
a full-datum matrix-vector multiplication with SSE3 instruc-
tions according to an embodiment;

FIG. 11 is the source code for a routine which performs
a half-datum matrix-vector multiplication with SSE3
instructions according to an embodiment

FIG. 12 is the source code for a routine which performs
a specialized half-datum matrix-vector multiplication with
SSE3 instructions according to an embodiment;

FIG. 13 is the source code for a routine which performs
an optimal half-datum matrix-vector multiplication with
SSE2 instructions according to an embodiment;

FIG. 14 is the source code for a routine which performs
a pipelined half-datum matrix-vector multiplication with
SSE2 instructions according to an embodiment.

FIG. 15 is a representation of a graphics pipeline consist-
ing of multiple tasks being done by multiple programs,
utilizing multiple stage units, according to an embodiment;

FIG. 16 depicts the sub-stages of the primitive setup stage
of the graphics processing pipeline according to an embodi-
ment;

FIG. 17 depicts the convex polygon outline rasterization
algorithm according to an embodiment

US 9,436,451 B2

9

FIG. 18 depicts alternative approaches to construct poly-
gons covering the fragments of line primitives according to
an embodiment;

FIG. 19 is a flow chart depicting the Parallel Task Engine
Main Program, according to an embodiment;

FIG. 20 is a flow chart depicting the Job Loop Program,
according to an embodiment;

FIG. 21 is a flow chart depicting an alternative Parallel
Task Engine Main Sub-program, according to an embodi-
ment; and

FIG. 22 is a flow chart depicting an alternative Job Loop
Program, according to an embodiment.

It will be noted that throughout description and the
appended drawings, like features are identified by like
names, e.g. “Command, “Task™, “Job”, and reference
numerals direct the reader to the appropriate drawing to
show the instance or aspect of the feature in the frame of
reference of the discussion. For example, in the discussions
below, “input Task 302’ is a Task 500, the structure of which
is detailed in FIG. 5, but in this reference, attention is
directed to this specific Task in FIG. 3. Sometimes the same
instance of an element will be described with different
reference numerals, in order to direct the reader’s attention
to different aspects of it or operations being performed on it.
Numerals do not specify unique structures, nor do they
specify the instance of an element being discussed. Elements
with the same name have the same structure, and particular
instances of elements are specified in the discussion explic-
itly.

DETAILED DESCRIPTION

Referring to FIG. 3, a Parallel Task Engine 300 is an
apparatus for performing Tasks 302 on arrays of Primary
Data 306. Primary Data 306 is data external to the apparatus.
A Task 500 (see FIG. 5) is a Command 510 and a collection
of one or more Data Pointers 520, which are POINTERS
referencing Primary Data 306. A POINTER is an address,
index, or token that can be used to locate a single datum or
an array of data, either directly or indirectly via one or more
tables. A Command 600 (see FIG. 6) is an Operation 610 and
zero, one or more Parameters 620. An Operation 610 is a
value that indicates a specific function to be performed on
the Primary Data 306 referenced by the Data Pointers 520,
and Parameters 620 are values that further specify the
Operation 610, for example, a number of data items to be
processed.

Parallel Task Engine 300 is composed of:

1. The current CONTEXT, which is a set of variables, or
a POINTER to a set of variables, containing auxiliary data,
modes and details of computations to be performed on the
Primary Data 306 to be processed. The CONTEXT is only
read by the Parallel Task Engine, and not written by it.
CONTEXT wvariables are initialized and written by the
external software entities that send Tasks 302 to the engine,
the “users” of this engine. If the CONTEXT is a POINTER
to a set of variables, it points to a set of variables maintained
by, and the value of this POINTER is set by, external
software entities.

2. A Task input 303, to receive input Tasks 302.

3. A Task Pool 310 of Tasks 500, awaiting dispensation.

4. One or more Job Loops 318. In a typical embodiment,
one Job Loop 318 will be allocated per CPU available for
use by the Parallel Task Engine 300 in the dispensing of
work. It is also possible to run more than one Job Loop 318
on a CPU, or to run a Job Loop 318 on a CPU also running
other programs. The multiple CPUs, and the computer

10

15

20

25

30

35

40

45

50

55

60

65

10

hardware, software, and operating facilities which allow a
software system to establish programs running on multiple
CPUs, are those known to persons skilled in the art, and will
vary from computer system to computer system. The Par-
allel Task Engine 300 assumes and utilizes these facilities in
a particular way, setting up programs on CPUs as necessary
in order to dispatch and accomplish Tasks 500. The Job
Loop 318 receives a Job 320, from the Parallel Task Engine
Main Program (not shown, but described in detail below).
Now referring to FIGS. 4, 5, and 6, a Job 400 is the
combination of a Task 420 and a Code Pointer 410 to a
routine which can execute an Operation 610. When the Main
Program assigns the Job 320 to the Job Loop 318, the Job
Loop 318 calls the Operation 610 routine, with Parameters
620, via the Code Pointer 410, in order to process the
Primary Data 306 specified by the Task 420 via its Data
Pointers 520 according to the Command 510 specified by the
Task 420. After the Operation 610 routine returns, the Job
Loop 318 will wait to receive the next Job 320 from the
Main Program.

5. A Code Generator 314, which is responsible for creat-
ing or finding Operation 610 routines, which perform Opera-
tions 610 on Primary Data 306, under the current CON-
TEXT.

6. A Cache 316, detailed on FIG. 7 as Cache 700, which
is a Directory 710 composed of Entries 720, and a Code
Buffer 750. The Entries 720 are composed of a Tag 730 to
be matched, which consists of an Operation 732 and a
Context 734, and Data 740, which is a Code Pointer 742 to
a routine which performs the Operation 732. A CONTEXT,
as defined above, specifies the conditions under which
Operations 610 are to be performed, or augments or modifies
the meaning of Operations 610, and thereby influences the
generation of code to perform Operations 610, or influences
the execution of that code. The Context 734 accompanying
the Operation 732 and the Code Pointer 742 to the Operation
732 routine in an Entry 720 is the specific CONTEXT that
was current at the time the Operation 732 routine was
created or located by the Code Generator 314, and the Entry
720 was created. To find a routine in a Cache 700 to perform
an Operation 610 under the current CONTEXT, it is neces-
sary to match the specified Operation 610 and the current
CONTEXT with the Tag 730 (Operation 732 and Context
734) of an Entry 720. The Code Buffer 750 is the repository
for storage of Operation 610 routines created dynamically
by the Code Generator 314. How the Entries 720 in the
Cache 316 Directory 710 are organized for lookup, via
indexing, hashing, or sequential search is not essential to the
present description. Likewise, when new Entries 720 are
created, given that the Directory 710 is of fixed size, this will
necessitate at times overwriting old Entries 720. The policies
for Entry 720 eviction in such cases are also considered to
be implementation specific details. [0100] 7. A Scheduler
312, which when requested, surveys the Task Pool 310 of
Tasks 500, and determines the appropriate Task 500 to
assign to a specified Job Loop 318. The Scheduler 312 is
responsible for decomposing Tasks 905 as necessary, main-
tains the Task Pool 310, maintains a record of Tasks 500 in
progress on the Job Loops 318, and understands the depen-
dencies between Tasks 500.

8. A Parallel Task Engine Main Program, which directs
the operation of the engine, and communicates with the Job
Loops 318. The Main Program dispenses Jobs 320 to Job
Loops 318. The Main Program gets the Task 420 for the Job
320 from the Scheduler 312, and looks up the Code Pointer
410 for the Job 320 by matching the Operation 610 in the
Command 510 in the Task 420, and the current CONTEXT,

US 9,436,451 B2

11

to the Tag 730 of an Entry 720 in the Directory 710 of the
Cache 316. If the proper Code Pointer 410 for the Operation
610 cannot be found in the Cache 316 Directory 710, the
Main Program calls the Code Generator 314 to create or find
a suitable routine, and then creates a Directory 710 Entry
720 for future reference.

All elements of the Parallel Task Engine 300 operate
under, and may read from the current CONTEXT, including
the Operation 610 routines executed by the Job Loops 318.
Only Operation 610 routines actually access the Primary
Data 306 for which the engine is configured to process. The
rest of the Parallel Task Engine 300 is concerned with
dispensing Jobs 320 to the Job Loops 318.

Also, the Job 400, Task 500, and Command 600 data
structures are ‘nested’ structures—they could each be rep-
resented by other structures that incorporate the same basic
information in a less hierarchical form—the exact form of
these data structures is not relevant to the essential operation
of the Parallel Task Engine 300, other representations of the
same information would serve as well—these forms were
chosen because they represent a unit of work or a key aspect
of that work at the level at which they are created or utilized.

A detailed, step by step description of the operation of the
Parallel Task Engine programs follow. These descriptions
employ single-threaded loops that may be represented by a
flow chart. No reference is made to processes or synchro-
nization mechanisms or other features of computer operating
systems that may be used to improve the efficiency of an
implementation of this engine. An embodiment may imple-
ment the following step-by-step methods directly, or it may
employ system-specific features or alternative formulations
that preserve the functional operation of the engine as
described here. This description is not the only representa-
tion or embodiment possible, and others are easily imagin-
able. However this description does suffice to demonstrate
the proper operation of the engine in a form that is trans-
ferable to many computer systems, assuming some multiple,
parallel CPU facility, and a shared memory to which all
CPUs have access.

Parallel Task Engine Main Program (FIG. 19):

Step 1901. Initialize the Cache 316 Directory 710 Entries
720, making all the Tags 730 ‘un-matchable’, (perhaps by
loading Context 734 with a value that will never match any
current CONTEXT).

Step 1902. Set up multiple Job Loops 318, according to
CPUs of different numbers and types available. For each Job
Loop 318, set REQUEST and DISPATCH counts to zero.
These counts are integers, which may be of any width,
including 1 bit. Each Job Loop 318 also has an incoming Job
320 POINTER variable. Start the Job Loops 318 on the
CPUs (Job Loop 318 detailed below).

Step 1903. Set L, an integer variable, to 0. Set N, an
integer variable, to the number of Job Loops 318. L repre-
sents the index of the Job Loop 318 under consideration in
steps 1904 through 1910, below, and ranges from 0 to N-1.

Step 1904. Inspect Job Loop 318 L’s REQUEST count. If
it is the same as the DISPATCH count, go to step 1910.

Step 1905. Call the Scheduler 312 to pick a Task 500 for
Job Loop 318 L, and remove it from the Task Pool 310. If
necessary, the Scheduler 312 will decompose a Task 905 and
place the new Tasks 940 in the Task Pool 310, before picking
a Task 500 for the Job Loop 318, which it returns to the Main
Program via a POINTER. If no Task 500 can be found, go
to step 1910.

Step 1906. Look in the Cache 316 Directory 710 for an
Entry 720 with a Tag 730 that matches the Operation 610

10

15

20

25

30

35

40

45

50

55

60

65

12

specified by the Task 500 and the current CONTEXT. If a
matching Entry 720 is found, go to step 1908.

Step 1907. Call the Code Generator 314 to create or find
a routine for the Operation 610 under the current CON-
TEXT. Create an Entry 720 in the Cache 316 Directory 710
containing the specified Operation 610 in Operation 732, the
current CONTEXT in Context 734, and a pointer to the
Operation 610 routine in Code Pointer 742. Go to Step 1906.

Step 1908. Compose the Scheduler 312 in Task 420, and
the matching Entry 720 Code Pointer 742 in the Scheduler
312 in Task 420, and the matching Entry 720 Code Pointer
742 in Code Pointer 410, and place a POINTER to Job 320
in Job Loop 318 L’s incoming Job 320 variable.

Step 1909. Set Job Loop 318 L.’s DISPATCH count to the
value of its REQUEST count.

Step 1910. Increment L. If L is less than N, go to step
1904.

Step 1911. Pull the next input Task 302 from the Task
input 303, if there is one, and place it in the Task Pool 310.
Go to step 1903.

Job Loop 318 (FIG. 20):

Step 2001. Increment this Job Loop’s 318 REQUEST
count.

Step 2002. Inspect this Job Loop’s 318 DISPATCH count.
If it is not the same as the REQUEST count, go to step 2002
(repeat this step).

Step 2003. From the incoming Job 320 POINTER vari-
able, get the Job 320 to do. Call the Operation 610 routine,
via the Code Pointer 410 with Parameters 620, to process the
Primary Data 306 as specified by the Task 420 Data Pointers
520, according to the Command 510 of the Task 420. Go to
step 2001.

The preceding two program descriptions characterize the
complete, high-level operation of the Parallel Task Engine
300, in an embodiment without program or execution thread
synchronization or signaling. Both the Main Program and
the Job Loops 318 are polling loops. When there is no work
to do, both programs ‘spin’ or are ‘busy waiting’. A first
improvement to this implementation, in a program environ-
ment that supports it, would be to cause the Main Program
and Job Loops 318 to block or sleep when there are no input
Tasks 302 to decompose or dispatch, and no Jobs 320 to do,
and to resume operation when input Tasks 302 and Jobs 320
arrive. This would make more efficient use of any CPU that
is shared by multiple programs. In the case of the Main
Program and a Job Loop 318 running on the same CPU, it
would also be desirable for the Main Program to run at a
lower priority than the Job Loop 318, or utilize some other
mechanism to ensure that the Main Program does not
continue to spin or accept input Tasks 302 when the Job
Loop 318 on the same CPU is executing a Job 320. The two
program loops operate in a producer/consumer relationship.
The Main Program produces Jobs 320, and the Job Loops
318 consume and do the Jobs 320. Any sequence or coor-
dination scheme that reliably effects the same results, with
the same components, is an alternative embodiment of the
Parallel Task Engine 300.

In another possible embodiment, the Job Loops 318 may
incorporate and call a version of the Main Program directly.
In this case it is necessary to ensure that multiple Job Loops
318 have mutually exclusive access to the Main (sub)
Program. This can be done by using operating system
software facilities, atomic read-modify-write CPU instruc-
tions, or through any one of several software mutual exclu-
sion algorithms, such as Dekker’s algorithm, or Peterson’s
algorithm.

US 9,436,451 B2

13

In this case, the Main Program becomes a sub-program or
subroutine which executes according to the following pro-
cedure:

Alternative, Parallel Task Engine Main (Sub) Program
(FIG. 21):

L, an integer variable, is passed into the Main (sub)
Program by the calling Job Loop 318, and represents the
index of the Job Loop 318 under consideration in the
following steps.

Step 2101. Call the Scheduler 312 to pick a Task 500 for
Job Loop 318 L, and remove it from the Task Pool 310. If
necessary, the Scheduler 312 will decompose a Task 905 and
place the new Tasks 940 in the Task Pool 310, before picking
a Task 500 for the Job Loop 318, which it returns to the Main
Program via a POINTER. If a Task 500 is found, go to step
2103.

Step 2102. Pull the next input Task 302 from the Task
input 303, if there is one, and place it in the Task Pool 310.
If there was an input Task 302, go to step 2101. If there was
no input Task 302, go to step 2106.

Step 2103. Look in the Cache 316 Directory 710 for an
Entry 720 with a Tag 730 that matches the Operation 610
specified by the Task 500 and the current CONTEXT. If a
matching Entry 720 is found, go to step 2105.

Step 2104. Call the Code Generator 314 to create or find
a routine for the Operation 610 under the current CON-
TEXT. Create an Entry 720 in the Cache 316 Directory 710
containing the specified Operation 610 in Operation 732, the
current CONTEXT in Context 734, and a pointer to the
Operation 610 routine in Code Pointer 742. Go to Step 2103.

Step 2105. Compose the Job 320 as a Job 400 with the
Task 500 from the Scheduler 312 in Task 420, and the
matching Entry 720 Code Pointer 742 in Code Pointer 410,
and place a POINTER to Job 320 in Job Loop 318 L’s
incoming Job 320 variable.

2106. Return to the calling Job Loop 318, indicating
whether or not a Job 320 is ready. The Job Loop 318 which
calls the Main (sub) Program is detailed below.

Alternative Job Loop 318 which calls Main (Sub) Pro-
gram (FIG. 22):

Step 2201. If this is the first Job Loop 318, initialize the
Cache 316 Directory 710 Entries 720, making them ‘un-
matchable’.

Step 2202. If this is the first Job Loop 318, set up multiple
other Job Loops 318, according to CPUs of different num-
bers and types available. Each Job Loop 318 has an incom-
ing Job 320 POINTER variable. Start the other Job Loops
318 on the CPUs.

Step 2203. Obtain exclusive access to the Main (sub)
Program.

Step 2204. Call the Main (sub) Program.

Step 2205. Yield exclusive access to the Main (sub)
Program.

Step 2206. If there is no Job 320 to do, go to step 2203.

Step 2207. From the incoming Job 320 POINTER vari-
able, get the Job 320 to do. Call the Operation 610 routine,
via the Code Pointer 410 with Parameters 620, to process the
Primary Data 306 as specified by the Task 420 Data Pointers
520, according to the Command 510 of the Task 420. Go to
step 2203.

The two other sub-program components of the Parallel
Task Engine 300, the Code Generator 314 and the Scheduler
312, are now detailed in turn.

Code Generator (or Run-Time Code Generator): The
Code Generator 314 is an element of the Parallel Task
Engine 300. The design of any particular Code Generator
314, and the specific methods by which the Code Generator

10

15

20

25

30

35

40

45

50

55

60

65

14

314 accomplishes its work will vary according to the spe-
cifics of the embodiment The way in which a Code Gen-
erator 314, fulfilling the requirements detailed below, is used
by the Parallel Task Engine 300, as described above, and as
will be detailed further in the exposition of specific appli-
cations, is part of an embodiment, and its application of
techniques of dynamic code generation.

As shown in FIG. 8, the Code Generator 314 may
‘generate’ an Operation 810 routine in one of two ways:

1. It may Synthesize 820 code to perform the Operation
810, from a higher level, meta-code description of Opera-
tions 810, or from ad-hoc code emitting routines, one for
each Operation 810, or through other means.

2. It may have ‘canned’, statically compiled (Locate Static
Code 830) Operation 810 routines, or fragments of Opera-
tion 810 routines, which may be used as-is, or concatenated
together, to form Operation 810 routines.

Either method is acceptable, or code generators in typical
embodiments may use both methods. Method 2 extends the
notion of Code Generator 314 to a function which simply
looks up a static Operation 810 routine in a table—for the
purposes of the description, this style of code ‘generation’ is
sufficient.

The Code Generator 314 must also have the capability of
‘specializing’ the code generated, by the CONTEXT out-
standing at the time of generation, resulting in an Operation
810 routine specifically generated for use in that CONTEXT.

For example, if a generic routine for an Operation 810 has
execution conditional on CONTEXT variables, and these
variables are known to be of a certain value that will remain
constant over the execution of the routine, the Code Gen-
erator 314 may generate custom code that assumes these
values. Again, this may be done as simply as modifying a
table look-up of the Operation 810 requested by adding
elements from the CONTEXT to the index into the table,
returning the proper, more specific static routine.

The Code Generator 314 may also contain a general
Optimizer 840, which can accept as input, generated (Locate
Static Code 830 or Synthesized 820) Operation 810 routines,
or meta-code representations of those routines, and output
more efficient routines or meta-code representations. Opti-
mization techniques well-known in the art include constant-
folding, reductions in strength, dead store elimination, com-
mon sub-expression elimination, copy propagation,
instruction combination, branch chaining and elimination,
loop unrolling and loop-invariant code motion, and global
register allocation. These techniques and others may be used
by an Optimizer 840.

The Code Generator 314 may also use the Optimizer 840
in order to accomplish specialization of a Synthesized 820 or
static routine. For example, if a generic Operation 810
routine computes four values as output, but a more specific
sub-Operation 810 requires only one value as output, the
Code Generator 314 may select the generic routine, and pass
it to the Optimizer 840, informing the Optimizer 840 that the
three unwanted values are to be considered dead stores. The
Optimizer 840 will then create the specialized, one-value-
computing routine.

The Code Generator 314, when generating new Operation
610 routines, will store the code contents of these routines
to the Cache 316 Code Buffer 750. Because that storage
space is finite, it will eventually be exhausted, and require
some existing code to be overwritten, destroying some
Operation 610 routines that reside in the Code Buffer 750.
How storage space is managed in this buffer is an imple-
mentation detail. However it is required that the Code
Generator 314 invalidate, or make un-matchable, any Cache

US 9,436,451 B2

15
316 Directory 710 Entries 720 with Code Pointers 742 that
reference code that has been overwritten, at the time that the
corresponding Operation 610 routines are destroyed.

Scheduler: Alternate embodiments may pursue different
strategies or policies, as appropriate for the particular appli-
cation of the Parallel Task Engine 300, but there are basic
functions that all Scheduler 312 implementations must per-
form, and there are certain constraints that must be observed.

The Scheduler 312 maintains the Task Pool 310 of out-
standing Tasks 500, and keeps a record of the Task 500 in
progress on each Job Loop 318. With the Tasks 500 the
Scheduler 312 may, but is not required to, keep additional
information, such as: 1. The time, or a sequence counter,
indicating when the input Task 302 was received from the
Task input 303. 2. An estimate of the size of a Task 500, or
time to completion. 3. Any other statistics or auxiliary
information that may assist the Scheduler 312 in its work.

The Scheduler 312 has one function, as called from the
Main Program—to remove a Task 500 from the Task Pool
310, and assign it to a Job Loop 318, returning that Task 500
to the Main Program, which will compose a Job 400
consisting of a Task 420 and an Operation 610 routine Code
Pointer 410, and pass this Job 320 to the Job Loop 318. In
the process of doing so, it may decide to decompose a Task
905 into other Tasks 940, adding the Tasks 940 to the Task
Pool 310, before choosing and assigning the Task 500 to the
Job Loop 318.

As shown in FIG. 9, the Scheduler 312 from FIG. 3 may
use one of three policies to decompose a Task 905:

1. By-Function 920—the Task 905 can be effected by one
or more Tasks 940 which each applies sub-FUNCTIONS or
sub-Operations 610, to the indicated Primary Data 306. If
the sub-Operations 610 must be applied sequentially, the
original Task 905 becomes new Tasks 940 which form a
pipeline. If the Operations 610 are independent, they may be
dispatched in parallel. The new Operations 610 and Tasks
940 may have arbitrary dependencies, allowing some to be
dispatched in parallel or in arbitrary order, and requiring
some to be dispatched only after the completion of others.
The new Tasks 940 reference the same Primary Data 306,
but have different Commands 510 (Operations 610 and
Parameters 620).

2. By-Domain 925—the Command 510 can be effected by
independently applying the Operation 610 to different sub-
sets or domains of the Primary Data 306. One Task 905
becomes one or more independent Tasks 940, which may be
executed in parallel The new Tasks 940 all contain the
original Operation 610, but the Parameters 620 and/or Data
Pointers 520 are modified to assign different Primary Data
306 domains to each new Task 940.

3. By-Component 930—An Operation 610 is defined to
operate on arrays of data, in other words, one or more data
items, which are atomic from the point of view of the
Operation 610. By-Component 930 decomposition of Tasks
905 divides the Primary Data 306 to be processed, or the
new Primary Data 306 to be computed, into domains which
are ‘sub-atomic’ or sub-components of the data processed by
the original Operation 610, effecting the original Operation
610 by one or more component Operations 610. These
component Operations 610 and the resulting Tasks 940 may
or may not have inter-dependencies. By-Component 930
decomposition is a combination of methods 1 and 2, it is
decomposition By-Domain 925, below the level of an
Operation 610’s natural atomic datum, in order to get, or
resulting in, decomposition By-Function 920.

As described above, the Scheduler 312 can achieve ordi-
nary decomposition of Tasks 905 By-Domain 925, by sim-

10

15

20

25

30

35

40

45

50

55

60

65

16

ply modifying a Task’s 905 Data Pointers 520 or Parameters
620. Likewise, in order effect decomposition of Tasks 905
By-Function 920, the Scheduler 312 can simply create the
requisite Tasks 940 with sub-Operations 610. These new
Operations 610 naturally suggest new Operation 610 rou-
tines, with new code. However, as described above, the
Code Generator 314 may decide that the sub-Operation 810
routine code is best generated by optimizing or specializing
more general Operation 810 code. In this case, the Parallel
Task Engine 300 can be said to use the Optimizer 840 to
accomplish functional Task 905 division by ‘algorithmic
decomposition’.

Given Tasks 905, which may be decomposed as the
Scheduler 312 sees fit, and a Job Loop 318 requesting a Job
400, containing a Task 500, the Scheduler 312 when called
by the Main Program must choose a Task 500 for the Job
Loop 318. The Scheduler 312 may use any sort of ordering
to choose the next Task 500, e.g. first-come-first-served,
starting the largest jobs first, finishing related Tasks 500
before others, etc., but certain rules must be followed:

The Scheduler 312, at the time it decomposes Tasks 905,
knows the dependencies that it creates between Tasks 940 as
it creates new Tasks 940 from other Tasks 905. It records and
respects these dependencies, and will not choose to start or
assign a Task 500 whose dependencies have not been
fulfilled (Tasks 500 on which the Task 500 depends must
have completed—this means that no Tasks 500 on which it
depends still reside in the Task Pool 310 or are in progress
on one of the Job Loops 318). The Task 500 dependencies,
for any Task 500, are simply a list of other Tasks 500 that the
Task 500 is dependent on. Dependency lists may be asso-
ciated with the Task 500, or may be kept in a table, indexed
by a Task 500 number, or may be kept by the Scheduler 312
in some other way.

A Task 500 is either in the Task Pool 310 unassigned, or
assigned to one (1) Job Loop 318. It cannot be assigned to
two or more Job Loops 318, and it cannot both be assigned
and waiting to be assigned. Once assigned, it will stay with
the Job Loop 318 until it is completed, at which time it
ceases to exist.

A Task 500 ‘A’ is understood to be completed when the
Main Program asks the Scheduler 312 for a new Task 500 for
the Job Loop 318 which was assigned the Task 500 ‘A’.
When a Task 500 is completed, the Scheduler 312 updates
(removes) dependencies (Task 500 indicators on a list of
Tasks 500 that a Task 500 is waiting on) from Tasks 500
dependent on the completed Task 500.

With these provisos, many implementations are possible.
The following step by step description details the operation
of one implementation of the Scheduler 312.

Scheduler Routine:

Step 1. The Main Program has asked the Scheduler 312
for a Task 500 for a specific Job Loop 318. If the Job Loop
318 was not previously assigned a Task 500, go to step 3.

Step 2. Because the Job Loop 318 has now requested a Job
320 from the Main Program, and the Main Program has
asked the Scheduler 312 for a Task 500 for the Job Loop 318,
this means that the Job Loop 318 has now completed any
Task 500 previously assigned to it. Look through the Task
Pool 310 and for each Task 500, update the lists of other
Tasks 500 that they are dependent on, by removing the Task
500 that this Job Loop 318 has just completed, from those
lists.

Step 3. Choose a Task 500. The choice of Task 500 can be
according to any number of policies, but must be a Task 500
with no outstanding dependencies on other Tasks 500. This
Task 500 may be a Task 500 that the Scheduler 312 can

US 9,436,451 B2

17

decompose, or it may not be. The Scheduler 312 understands
which Commands 510 and Operations 610 allow decompo-
sition by different means. The Scheduler 312 may also make
decisions to decompose Tasks 500 or not based on available
CPU resources, or the number of Job Loops 318 currently
occupied with Tasks 500. If the chosen Task 500 is not to be
decomposed, go to step 5.

Step 4. Decompose the Task 905 by one of the three
means described above—By-Function 920, By-Domain
925, or By-Component 930. Place all of the new Tasks 940
in the Task Pool 310. Go to step 3. Note that Tasks 905
should not be infinitely decomposable, there should be a
finite number of data By-Domain 925 partitions possible,
and a finite number of Operations 610 and sub-Operations
610. Tasks 905 should not be decomposed into the same
Task 940, or into chains of Task 905 decompositions that
eventually lead back to the original Task 905, or the Sched-
uler 312 may get stuck in this loop—but this is an imple-
mentation detail, part of the policies and strategies chosen,
and definition of Commands 510 and Operations 610, made
by the implementor when applying the Parallel Task Engine
to a specific problem.

5. Assign the Task 500 to a Job Loop 318, and record this
fact. Return a POINTER to the Task 500 to the Main
Program.

It is worth noting the extent to which the Scheduler 312
may decompose a particular problem with little knowledge
of it, an almost ‘blind’ or automatic decomposition. The
Scheduler 312 need only know which Operations 610 are
composed of which other Operations 610 in sequence, to
perform a By-Function 920 decomposition, with dependen-
cies among the new Tasks 940 set so that the new Operations
610 are performed in order on the same Primary Data 306.
By-Domain 925 decomposition can be done on any Task 905
by adjusting Data Pointers 520 or the Parameters 620 for an
Operation 610. And By-Component 930, or interleaved
By-Domain 925 decomposition can be done by knowing
only which specific partial-datum component or alternate
datum Operations 610 to substitute for the full-datum Opera-
tion 610. The Code Generator 314, as noted above, may or
may not have ‘canned’ (Locate Static Code 830) specific
Operation 610 routines, and it may have to Synthesize 820
new routines. Or it may Optimize 840 a more generic routine
to get the appropriate partial datum routine. This general
process, especially with code specialized and optimized
under specific CONTEXTS, would seem to know more
about a problem than it does—in reality it only need know
Operation 610 rewriting rules.

But given a multiplicity of possible decompositions,
applied blindly without knowledge of a problem, how could
such a problem-agnostic Scheduler 312 choose a good
decomposition ? It is possible for the Scheduler 312 to have
general heuristics, along with a trial and error, run-time
experimental approach. Nothing prevents the Scheduler 312
from trying a decomposition, measuring the code in the
Operation 610 routines received from the Code Generator
314, and then deciding whether or not to try something
different. Or, these experiments can be done ahead of time,
and fed back into the heuristics or fixed strategies built-in to
the Scheduler. In short, it is possible to build both accumu-
lated experience and run-time decision-making into the
Scheduler 312 so that it can make good decompositions, on
the basis of the code that will be executed in the scenario
under consideration. Novel decomposition strategies, and
the availability of a CONTEXT-sensitive dynamic code
generator, open up possibilities for dynamic problem

10

15

20

25

30

35

40

45

50

55

60

18

decomposition, and as well as dynamic code generation, in
order to get the most efficient Tasks 500 under prevailing
conditions.

More specifically, the Scheduler 312 can make run-time
decomposition choices based on the quality of code gener-
ated by the Code Generator 314, in the Main Program
procedures as described above, with no change necessary to
those procedures. Generated code quality is simply another
input to the Scheduler’s 312 decomposition strategy. When
presented with a Task 905 to be decomposed, the Scheduler
312 can try a number of Operation 610 re-writings in terms
of new Operations 610. It can request (independently of the
Main Program’s call to the Code Generator 314) the Code
Generator 314 to generate code for the Operations 610
considered. The Code Generator may return statistics to the
Scheduler 312, or the Scheduler 312 may analyze the code
itself. Operation 610 routines will be created differently by
the Code Generator 314 at different times, depending on the
CONTEXT, and the Scheduler 312 will make different
decomposition decisions accordingly. The Scheduler 312
uses the Code Generator 314 in order to effect ‘dynamic
problem decomposition’.

Example Applications: The following applications dem-
onstrate the use of the Parallel Task Engine design and
scheme of computation to provide solutions to specific
computational problems, using dynamic code generation, in
a multi-CPU environment.

Application 1: Matrix-Vector Multiplication: A matrix K,
with M rows and N columns, may be multiplied by a column
vector V, with N rows, to get a column vector P, with N rows.
Element “I” of P is the vector dot product of row 1 of matrix
K with the vector V. Or, assuming rows are numbered O to
M-1 and columns 0 to N-1:

Matrix-vector multiplication of this sort comprises a
linear transformation of the vector V by the function repre-
sented by the matrix K, and has many applications in various
domains of computation.

FIG. 10 shows a routine, written in Intel x86 assembly
language, using the SSE3 instruction set extensions, which
loops through vector data, multiplying these vectors by a
constant matrix, and creating an output set of vectors. The
semantics of the individual Intel x86 instructions are defined
in the Intel Architecture Software Developer’s Manual. This
routine computes the multiplication of a 4x4 matrix with a
4x1 (4 row, 1 column) vector. All matrix and vector elements
are double precision (64 bit) IEEE 754 format floating point
numbers. The loop body computes two row-vector dot
products at a time, using the HADDPD (Horizontal ADD
Packed Double-precision) instruction and then does the next
two. It is limited in the amount of computation it can
accomplish before loading more data from memory, because
the Intel x86 architecture only provides eight registers for
vector data, which may be operated on with the SSE3
instructions. This routine is a reasonably efficient implemen-
tation, although greater efficiencies may be achieved by
unrolling the loop, and reordering (scheduling) the instruc-
tion sequence to allow the processor to execute the instruc-
tion stream more quickly.

A Parallel Task Engine software system can be con-
structed to perform matrix-vector multiplication, starting
from the program in FIG. 10 as the template for a generic
Operation 610 routine.

US 9,436,451 B2

19

Define the following Commands 510/Operations 610/
Tasks 302: Operation 610 MATVEC4x4—Multiply a 4x4
matrix by a 4x1 vector, for all the vectors in an input array,
computing product vectors, which are stored in an output
array (as in the routine in FIG. 10). A Command 510
specifying this Operation 610 is Parameterized 620 by the
number of vectors to process, the offset in bytes from the
beginning of the array of the first input vector and first
output vector to process, and an offset mask, which is the
((number of vectors to process multiplied by the vector size
in bytes)-1). Data Pointers 520 are provided in the enclosing
Task 500 to specify the base addresses of the input and
output vector arrays.

Operation 610 XY_MATVEC4x4, and Operation 610
YZ_MATVEC4x4These Operations 610 are sub-Operations
610 of MATVEC4x4, and Tasks 905 with MATVEC4x4
Operations 610 may be decomposed into one Task 940 each
with XY_MATVEC4x4 and YZ_MATVEC4x4 Operations
610. These Operations 610 compute (only) either the x and
y (0 and 1), ory and z (2 and 3) elements of the four element
product vector, in the matrix-vector multiply of the MAT-
VEC4x4 Operation 610. A Command 510 specifying either
of these Operations 610 is Parameterized 620 by the number
of vectors to process in this Task 500, the starting offset of
vectors input and output in this Task 500, and the offset mask
from the full-datum Task 500 from which it was decom-
posed. The Data Pointers 520 are copied from the full-datum
Task 500 into these half-datum sub-Tasks 500.

The machine receives MATVEC4x4 Tasks 302 (Tasks
302 with Commands 510 with Operation 610 of MAT-
VEC4x4) from the outside world, and processes them; that
is its sole function. It decomposes and dispatches these
Tasks 302 or sub-Tasks 500 as it deems necessary in a one,
two, or four CPU environment. The matrix used for the
matrix-vector multiplication is part of the CONTEXT.

The Scheduler 312 for this matrix-vector multiplying
machine has the following policies:

First-in, First-out (FIFO), or “first come, first served”. As
Tasks 302 are received at the Task input 303, they are placed
in the Task Pool 310 in a linked list, such that new Tasks 500
are placed at the end of the list. Tasks 500 are assigned to Job
Loops 318 (after being decomposed, if the Scheduler 312
chooses to do so) from the front of the list.

If there is only one CPU present, the Scheduler 312 will
not decompose MATVEC4x4 Tasks 500. If there are two
CPUs present, the Scheduler 312 will decompose MAT-
VEC4x4 Tasks 905 By-Component 930 to get XY_MAT-
VEC4x4 and YZ_MATVEC4x4 Tasks 940 (Tasks 940 with
Commands 510 with Operations 610 which are XY_MAT-
VEC4x4 and YZ_MATVEC4x4). These two sub-Tasks 940
each process all the vectors, but start at different points in the
arrays—the XY sub-Task 500 will start at the beginning and
the YZ sub-Task 500 will start at the middle of the input and
output arrays. If there are four CPUs present, XY_MAT-
VEC4x4 and YZ_MATVEC4x4 Tasks 905 are further
decomposed By-Domain 925, splitting the XY Task 905 into
two XY sub-Tasks 940, and the YZ Task 905 into two YZ
sub-Tasks 940, each responsible for half of the vectors
covered by the larger Task 500 from which it was decom-
posed. A MATVEC4x4 Task 302 becomes 1, 2, or 4 Tasks
500, for 1, 2, or 4 CPUs.

Decomposed Tasks 940 replace the original Task 905 in
the same position on the linked list of Tasks 500 in the Task
Pool 310—in other words, one MATVEC4x4 Task 500 in
the second position from the head of the linked list can

40

45

20
become XY MATVEC4x4 and YZ_MATVEC4x4 Tasks
500 in positions 2 and 3, in front of the Task 500 that was
previously at position 3.

There are no dependencies between any Tasks 500 or
sub-Tasks 500 in this MATVEC4x4 engine.

These policies applied to the step-by-step description of
the general Scheduler 312 procedure given above charac-
terize the specific Scheduler 312 for the MATVEC4x4
engine.

The Code Generator 314 for this MATVEC4x4 engine
operates as follows:

The MATVEC4x4 Operation 810 routine is as shown in
FIG. 10. Tt can be used unchanged for a MATVEC4x4
operation.

The XY_MATVEC4x4 Operation 810 routine is shown in
FIG. 11. It can be used directly, or it could also be derived
from the MATVEC4x4 routine by applying the Optimizer
840—note that when the z and w components are considered
dead, all of the instructions that contribute to the computa-
tion of these values (the last 12 instructions in the second
half of the loop body) can be eliminated. Once these
instructions are eliminated, the four matrix-row register
loads in the second half of the loop body become redundant,
and the first four loads of these values to registers, which are
now constant over the loop, can be moved outside the loop.
The YZ_MATVEC4x4 Operation 810 routine is symmetri-
cal to the XY routine, and is of the same length.

The XY_MATVEC4x4 and YZ_MATVEC4x4 Operation
810 routines can be specialized by knowledge of the con-
stant matrix, in the CONTEXT, that is used over the routine.
Of course, when the CONTEXT changes, Operation 610
routine look-ups in the Cache 326 Directory 710 will fail,
and new Operation 610 routines must be generated, and new
Entries 720 created. In this example engine, the Code
Generator 314 will take note of which matrix elements are
zero and nonzero. FIG. 12 shows a routine that has been
specialized with such knowledge of matrix zero elements. It
can be derived from XY and YZ routines as shown in FIG.
11, by using the Optimizer 840 to systematically apply
simple substitutions and rules, as noted in the comments
accompanying the code.

FIG. 13 shows an extremely optimized version of the
XY_MATVEC4x4 Operation 810 routine, specialized with
the same matrix knowledge as in FIG. 12. Achieving this
code is challenging, but possible for an Optimizer 840. It
represents a dramatic example of the possible performance
advantage of specialized, optimized, decomposed Operation
810 routines.

The MATVEC4x4 engine will basically operate as fol-
lows:

MATVEC4x4 Tasks 302 will arrive at the Task input 303.

The engine will dispatch the Tasks 500 to the Job Loops
318 in order.

1, 2, or 4 Job Loops 318 will execute either:

1 CPU/Job Loop 318: 1 MATVEC4x4 Operation 610
routine per incoming MATVEC4x4 Task 302.

2 CPUs/Job Loops 318: 1 XY_MATVEC4x4 Operation
610 and 1 YZ_MATVEC4x4 Operation 610 per incoming
MATVEC4x4 Task 302.

4 CPUs/Job Loops 318: 2 XY_MATVEC4x4 Tasks 500,
and 2 YZ_MATVEC4x4 Tasks 500, each XY or YZ Task
500 operating on half of the vectors, for each MATVEC4x4
Task 302.

Performance of the MATVEC4x4 Parallel Task Engine:
In the case of 1 CPU/Job Loop 318, the performance of a
Parallel Task Engine implementation of MATVEC4x4
Operations 610 on arrays of vector data is substantially the

US 9,436,451 B2

21

same as simply calling the Operation 610 routine directly—
there is a very small amount of overhead for SCHEDULING
and communication, but the processing of the Primary Data
306 is unchanged.

Looking at FIG. 10 more closely, we see that this pro-
cessing consists of 32 instructions, 12 memory reads, and 2
memory writes, in the body of the loop, in order to compute
one complete product vector. The instructions ahead of the
loop and at the very end of the loop, which update offsets
and loop count, are not counted. The instructions ahead of
the loop are not counted because they are executed once per
routine, and with a large number of vectors to be processed,
the time spent in the loop will represent almost all the time
spent in the routine. The reason the instructions at the end of
the loop should not be counted is that this loop may easily
be “unrolled’ that is, the body of the loop may be duplicated
some number of times, and the offset and loop count updates
may be amortized over the entire resulting loop body. For
clarity and brevity, none of the code examples are unrolled,
but they all may be, and so the metrics for comparison
include the length in instructions of the core loop body, and
the quantity of results achieved by that code. It is also
possible, for any particular CPU and computer system, to
estimate or measure the actual time in CPU clock cycles for
a small ‘kernel’ computation such as this, but the cycle
counts for instructions on different models of CPU vary. For
any one CPU, however, given a base routine using particular
instruction set features, routines with shorter core sequences
will in general be faster. As long as these shorter routines do
not use ‘extra’ CPU features that would have also been
useful in the base routine, these are fair comparisons. Lastly,
the code in these Operation 610 routines can be re-ordered,
or scheduled, in particular ways for particular CPU models,
and this can improve the performance of this code on a
particular CPU. Instructions can have various latencies (time
to creation of results), but another instruction may start
execution before a previous instruction has completed, as
long as the later instruction does not require the results of the
previous instruction. So instruction execution may be over-
lapped, and instructions can be re-ordered to take advantage
of this overlap. Instructions may only be re-ordered insofar
as long as they preserve the semantics of the original
sequence—in other words, data dependencies and the essen-
tial computations must remain the same in the re-scheduled
code. The fewer data dependencies, and the more indepen-
dent computations, or the more computations that may
remain independent because there are free registers to hold
their intermediate results, the more freedom a scheduler has
in re-ordering instructions. None of the examples have been
optimally scheduled for any particular CPU, but arguments
will be made that some of the examples are more amenable
to scheduling than others.

In the case of two or four CPUs, XY_MATVEC4x4 and
YZ_MATVEC4x4 Operations 610, as in FIG. 11, will be
used. The core of the loop is 12 instructions, with two
memory reads, and 1 memory write. Because it is only
computing the x and y components of the output vector, only
the first two rows of the matrix are required, and the four
registers containing the first two rows may be loaded ahead
of, and remain constant throughout, the loop. In 12 instruc-
tions two of the four components of the output vector are
computed. The YZ Operation 610 routine is symmetrical,
and performs the same intrinsic computations. This scheme
of computing two components at a time results in a more
efficient loop body. However, in most cases, it would not be
a good problem organization on a single CPU, because this
would mean traversing the input and output arrays twice for

20

30

40

45

50

55

22

the same computation, doubling the total number of memory
reads and writes, and this would likely overwhelm the 25%
(12 for XY +12 for YZ=24, compared to 32) reduction in the
length of the loop body. With a large array of vectors, the
required reads and writes to input and output vector arrays
will outstrip the single CPU’s data cache capacity, and some
number of cache misses will occur. Double the cache misses
will occur if XY and YZ routines are executed in sequence
on a single CPU, unless the original MATVEC4x4 Task 302
was first decomposed By-Domain 925 into a series of small
vector batches (which could be done without the Parallel
Task Engine, by simply nesting an XY loop and a YZ loop
in an outer loop, or could also use a Parallel Task Engine
configured for this application, to do the decomposition,
even with one CPU). However, even in this case, any single
CPU has a limited size data cache, and two CPUs of the
same model will have twice the data cache, and this can be
exploited. An XY and a YZ Task 500 can be dispatched to
different CPUs, and in this case, each CPU will see roughly
the same number of cache misses as a single CPU running
the full-datum routine of FIG. 10 (or less, because the matrix
rows are not reloaded), but enjoy the 25% reduction in loop
body length, and the factor of three reduction in memory
reads. Each XY or YZ loop does half as much work, but it
is more than twice as fast, and so using two CPUs in this
fashion is faster than using two CPUs and decomposing a
MATVEC4x4 Task 905 simply By-Domain 925, giving half
the full-datum computations to each processor (which, of
course, can be done with the Parallel Task Engine). An
advantage of this two-processor XY, YZ decomposition,
over one in which (a series of smaller) XY and YZ routines
are performed in sequence on a single CPU, which would
then be decomposed By-Domain 925 to two sets of Tasks
940 for 2 CPUs, is that there are fewer Tasks 940 (the same
number of Tasks 940 for all models of CPU, no matter what
the data cache capacity), and the Scheduler 312 does not
have to estimate the appropriate working set to avoid data
cache thrashing on any single CPU—the two CPU data
caches are used to advantage transparently and in a way that
works on any model of CPU. It is true that in total, under a
By-Component 930 decomposition, the number of input
data reads done by the CPUs in combination, may be more
than the number of reads done by full-datum routines on the
same number of CPUs (although this is not the case in the
current example, due to the dearth of registers, and the
requirement to reload the input vectors, in the full-datum
routine), and this may be how we “pay” for the extra
registers available in partial-datum routines—but those
reads are covered by the individual data caches on the CPUs,
and the fact that the total load on memory is higher will not
be important, unless the two CPUs contend for access to
memory.

To keep the two CPUs from contending for access to the
same memory at the same time, the XY Task 500 starts at the
beginning of the input and output arrays, and YZ Task 500
starts in the middle. As the input and output offsets are
advanced through the arrays in each routine, they are
masked (logical “and” operation) with the offset mask as
defined above, which has the effect of “wrapping” the offset
around at the end of the vector arrays—the XY Task 500
starts at vector 0 and ends at vector N-1, and the YZ Task
500 starts at N/2, wraps past the end to 0, and ends at vector
N/2-1. Thus, if the two Operations 610 proceed at roughly
the same rate, they will rarely contend for read access to the
same memory. They will of course, not ever write the exact
same memory, as one Task 500 will write only x and y, and
the other will write only y and z, but they could possibly at

US 9,436,451 B2

23

times contend for write access to the same local area of
memory, as they can when reading—logically, if both are
started at the same time, and are running at the same speed,
they will not contend, but because they are independent,
unsynchronized CPUs, with independent asynchronous
events and independent resource management, they may
drift forward and backward with respect to each other, and
very occasionally need access to the same memory. Since
their starting and ending locations are N/2 vectors apart,
minor variations in moment to moment progress should
make instances of access to the same vector, or even the
same large group of vectors, very rare. (This same multi-
CPU, multi-cache, non-contending access scheme can be
used in any scenario of decomposition By-Domain 925 in
which the two domains are interleaved, and would require
multiple passes through the data on a single CPU, deriving
the same benefit of allowing separate computation on inter-
leaved sets of data with no memory access penalty.)

With two or more CPUs, the XY and YZ problem
breakdown takes advantage of having two sets of registers
and two data caches to apply to the problem.

In the case of four CPUs, the XY and YZ Tasks 905 can
be decomposed by Domain 925, each Task 905 splitting into
two of the same sorts of Tasks 940, with each responsible for
one half the vectors. This will cut the time per vector in half.
Each Task 940 will now be starting on a separate quarter of
the vector arrays, with each task reading and writing half of
them, as follows: CPU 0; XY Task 500, vectors 0 to N/2-1,
CPU 1: YZ Task 500, vectors N/4 to 3N/4-5 CPU 2: XY
Task 500, vectors N/2 to N-1, CPU 3: YZ Task 500, vectors
3N/4 to N/4-1.

When the XY or YZ routines of FIG. 11 are specialized to
account for the knowledge of the matrix, they can be even
more efficient. FIG. 12 shows that in a case where only one
element in each of the two matrix rows being used are
nonzero, and the two elements are diagonally adjacent (not
that uncommon a case in many matrix applications), a
routine specialized through simple optimization can be
almost twice as fast as the un-specialized routine, needing
only seven instructions in the loop body to complete its
work. (Larger, full-datum routines can also be specialized, of
course—but the smaller the generic routine, the smaller the
resulting specialized routine).

FIG. 13 shows an optimally specialized routine, under the
same conditions as in FIG. 12. This result is achievable by
a Code Generator 314 and an Optimizer 840, but not as
easily as the routine in FIG. 12. This routine requires just
three instructions in the core of the loop. Such a short loop
suggests a pipelined stream of instructions, one that could be
scheduled to achieve maximum overlap of long-latency
instructions, as in FIG. 14. The total number of instructions
per half-vector output does not change from FIG. 13, but as
four half-vectors are “in flight” at the same time (which is
possible because of the freeing of registers due to the
By-Component 930 decomposition and the constant matrix
specialization), this code will probably schedule better on
many CPUs.

To summarize the performance of a MATVEC4x4 Paral-
lel Task Engine, we can see from this example, that given
what we take as an efficient routine for computing a 4x4
matrix-vector product, i.e. FIG. 10, using By-Component
930 decomposition, with two or four CPUs, we can generate
vector products roughly 4/3 as fast (loop body length ratio
of' 12/16) as any ordinary By-Domain 925 decomposition to
multiple CPUs, with no extraordinary effort. When routines
are dynamically generated with specialized knowledge of
matrix contents, they can be faster (16/7 as fast, loop body

20

30

40

45

55

24

length ratio of 7/16, in this example), again without extraor-
dinary effort. With a very advanced Optimizer 840 the
performance of specialized code can be even better (16/3
faster, in this example).

By-Component 930 or other By-Function 920 decompo-
sitions are useful when the full-datum or full-function rou-
tine is “too big” to fit in the register set of the CPU.
By-Domain 925 decompositions are generally productive,
and in a multi-CPU environment, domains may also be
interleaved. As shown by this example, several aspects of
the Parallel Task Engine 300 can leverage each other to
provide greater than linear speed-up when applying multiple
CPUs to the data processing problem:

The availability of multiple CPUs with multiple data
caches makes certain problem decompositions practical,
which would not be practical in a single-CPU environment.
This is true for By-Component 930 and any other inter-
leaved By-Domain 925 decompositions.

By-Domain 925 interleaved decompositions may contain
address arithmetic or other expressions which can be sim-
plified in more specific variants of Operation 810 routines,
because of knowledge of evenness, oddness, or other
implicit numeric properties of data indices under the inter-
leaved decomposition.

The appropriate By-Component 930 or By-Function 920
problem decomposition can yield Operation 610 routines
that are simpler and faster, splitting the computation of
results over multiple CPU register sets. These routines can
then make better use of individual CPU resources, which
may allow more data to be computed per iteration, and
which may schedule better, leading to better overall effi-
ciency per CPU. They are also easier for a static or dynamic
Optimizer 840 to improve.

By-Component 930 and other By-Function 920 decom-
posed routines can be created dynamically (algorithmically
decomposed') by the Code Generator 314, deriving them
from generic routines by applying the Optimizer 840 to the
generic code.

Specialization of Operation 810 routines with knowledge
of run-time constants can lead to great improvements in
processing speed. The presence of a dynamic Code Genera-
tor 314 and an Optimizer 840 that can derive specialized
routines from generic routines is a general solution to the
specialization problem. Small, simple routines, obtained
from better decompositions, are also easier to specialize.

Decompositions are chosen, either at run-time, or by
experimentation, the results of which are then fed back into
the configuration of the Scheduler 312, so that the decom-
positions produce the best sum total performance, based on
an examination of the operation routines generated. The
example just given is a methodical exercise in this decom-
position process. When the Scheduler 312 makes these
decisions at run-time, it must perform a similar analysis of
code, weighing the benefits of different decompositions,
optimizations, and specializations. Decomposing to get the
same amount of work done across all CPUs, with best
per-CPU code in dynamically generated Operation 810
routines, is a novel decomposition strategy, and a means for
pursuit of this strategy as presented here, is a feature of the
invention.

Application 2: 3D Graphic Image Renderer. A 3D graph-
ics image renderer, like the pipeline 200 represented in FIG.
2, can be implemented with the Parallel Task Engine 300. It
consists of: Vertex processing (position transformations and
lighting); Primitive assembly or “setup”, clipping, culling,
and rasterization; and Fragment or pixel “shading” (color-
ing, texturing, buffer operations).

US 9,436,451 B2

25

Each of these stages of computation can be performed by
a dynamically generated Operation 810 routine that is spe-
cialized according to run-time values of graphics CON-
TEXT variables. The processing involved in the graphic
pipeline is ripe for parallel decomposition—many primi-
tives, defined by many vertices, enclosing many pixels, all
of these stages have many processing steps, and all of these
basic data types have many independent properties.

This graphics pipeline can also support application-pro-
vided vertex programs and pixel shaders. These programs
are simply part of the graphics CONTEXT, and the Code
Generator 314 now creates vertex, setup, and pixel Opera-
tion 810 routines using these programs as a source of
semantics, instead of the usual fixed function definitions.
The result is the same, Operation 610 routines for the three
stages specific to the CONTEXT.

These computations at the three stages require large
amounts of temporary state, such as buffers and data struc-
tures that represent the initial conditions or intermediate
results of the computation as it progresses. For example,
vertex processing may keep a cache of already-processed
vertices, as vertices may be shared by contiguous primitives.
For this reason, it is convenient to have stages perform their
computations ‘at’, or conjunction with stage Units 1510.
Units 1510 are static data structures enclosing temporary
data, utilized by the stage computations, and specific to a
particular kind of stage (vertex, setup, or pixel) computation.
Stage computations must be attached to an available (no
other computation in progress) Unit 1510 of the right kind
in order to commence.

FIG. 15 shows the data flow and stages of computation in
the graphics pipeline. The horizontal rows show vertex,
setup, and pixel Units 1510, with all Units 1510 of the same
kind in their own column. There is no specific relationship
between the rows and Job Loops 318, or any partition of
Primary Data 306. The diagram depicts an array of Units
1510, and the paths that the data may follow, as it is
transformed. Any Task 500, for any stage of processing, may
be attached to any available Unit 1510 of the right kind, and
then the Task 500 may be assigned to any Job Loop 318. The
system is set up with as many Units 1510 of a certain kind
as required to support concurrent stage computations of that
kind.

In the Parallel Task Engine implementation of the graph-
ics pipeline, input Tasks 302 specify lists of graphics primi-
tives to be rendered. The input Primary Data 306 is a
collection of vertices and primitive definitions. The output
Primary Data 306 is the display frame buffer. Auxiliary data
such as transformation and projection matrices, texture and
light source definitions reside in the graphics CONTEXT.

The Scheduler 312 for this graphics pipeline has these
policies:

Primitives are drawn in first-in, first-out order. All pixels
of'a primitive may not be displayed at once, but for any pixel
in the frame buffer, pixels from primitives are written in the
same order as the primitives themselves are (requested to be)
drawn, e.g. the pixel resulting from the first primitive drawn
will be written first, and the pixel from the last primitive
drawn will be written last. This will preserve the effect of
primitives that are drawn over portions of other primitives.

Pixel Tasks 500 are dependent on setup Tasks 500 that
process the outlines, compute gradients for interpolation,
and perform the rasterization of the primitives that enclose
or bound them. Primitive setup Tasks 500 are dependent on
the vertex Tasks 500 that process the vertices that define the
primitive.

25

30

40

45

50

26

Pixels are written to the frame buffer as soon as possible,
while preserving drawing order as described above. Pixel
sub-Tasks 500 are done before their enclosing primitive
setup Tasks 500, which are done before their defining vertex
Tasks 500, in other words, as soon as the Tasks 500 on which
they are dependent have completed. For any set of pixels
covered by a pixel Task 500, the pixel Tasks 500 for
primitives drawn earlier are done before the pixel Tasks 500
for that same set of pixels resulting from primitives drawn
later. The same ordering with respect to their source primi-
tives is true for setup and vertex Tasks 500.

Tasks 500 must be assigned to a Unit 1510 of the right
kind to do their work. If the right kind of Unit 1510 is not
available (free) for use, the Task 500 cannot be scheduled.
When a Task 500 is assigned a Unit 1510, the Unit 1510 is
unavailable until the Task 500 is complete.

Tasks 500 are decomposed in several ways:

The input Task 302 is a list of primitives to render. This
input Task 905 is first split into Tasks 940 for two passes.
These two passes are a decomposition By-Component 930
of'the final frame buffer pixels—the first pass computes only
the z-buffer value of the rendered pixels. The second pass
computes everything but the z-buffer value, and uses the first
pass z-buffer value in the traditional way, in order to
determine whether the pixel should be drawn or not.

A (pass 1 or pass 2) primitive-list rendering Task 905 can
be decomposed By-Domain 925 into Tasks 940 with shorter
lists, or batches of one or more primitives to render.

A primitive-list rendering Task 905 is decomposed by
FUNCTION into a vertex Task 940, a primitive assembly or
setup Task 940, and a pixel Task 940, modeling the pipelines
200 of FIG. 2 and 1500 of FIG. 15. These Tasks 940 are
successive stages, the pixel Task 940 is dependent on the
setup Task 940, and the setup Task 940 is dependent on the
vertex Task 940.

The vertex Task 500 has a Data Pointer 520 from the input
Task 302 to a vertex buffer containing all of the vertices for
all of the primitives, to be processed en masse, regardless of
their primitive associations. This vertex Task 905 can be
decomposed By-Domain 925 into multiple independent ver-
tex Tasks 940. This decomposition may be ‘blind’, or it
could be sorted according to association with groups of
primitives.

Vertex processing includes many cases of matrix-vector
multiplication, which may be decomposed By-Component
930 and By-Domain 925, as in the matrix-vector example
described above.

The primitive setup Task 905 has a Data Pointer 520 to a
list of primitives to render, from the input Task 302. It can
be subdivided By-Domain 925 into multiple independent
Tasks 940 with shorter lists of primitives. Depending on how
the original vertex Task 905 was decomposed, some setup
sub-Tasks 940 may not be dependent on all of the vertex
sub-Tasks 940.

The pixel Task 905 can be decomposed By-Domain 925
into pixel groups of various kinds. One alternative is mul-
tiple sections of the display screen. Another is interlaced, or
alternating horizontal bands on the display, one or more
pixels tall. Or the pixel Tasks 940 can be sorted according to
primitive groups, or types. The pixel Tasks 905 may also
amenable to By-Component 930 decompositions, e.g. color
values, the components of which can be computed indepen-
dently, in certain lighting and shading operations.

In order to effect its Task 500 ordering policy, the sched-
uler must look for the earliest pixel Task 500 (from the
earliest primitive), check its dependencies, and if none are
ready, look for the earliest setup Task 500, and if none are

US 9,436,451 B2

27

ready, choose the earliest vertex task. This can be done in a
number of ways. One convenient way is to keep the Tasks
500 on a linked list, as in the matrix-vector example above.
When decomposing primitive-list rendering Tasks 905 into
vertex, setup, and pixel Tasks 940, they are added to the list
in reverse order: pixel, setup, and vertex. Now the scheduler
can start from the head of the list, and simply choose the first
Task 500 with no outstanding dependencies, and for which
a Unit 1510 of the right kind is available.

The Code Generator 314 for the graphics pipeline can
take advantage of the following opportunities for special-
ization and optimization:

The first pass and second pass are By-Component 930
final pixel decompositions of the pixel’s depth, z, and the
complementary components to z. The first pass Operation
610 routines can be dramatically reduced, as most of the
results which will be computed in pass 2 Tasks 500 are not
needed in pass 1.

Because the z-buffer is filled early (before pass 2 starts),
as soon as rasterization is complete, it is known for any pixel
whether or not the pixel will eventually be written to the
frame buffer. No additional processing will be done for
pixels that are not displayed. This is a kind of ‘depth-sorting’
that occurs naturally with this decomposition and this
engine.

All of the graphics processing stages depend on many
variables, options, and auxiliary data in the graphics CON-
TEXT. There are hundreds of opportunities to specialize
Operation 610 routines by knowledge of variables that are
constant at run-time, and therefore many conditional tests
and branches in generic Operations 810 will be removed by
the Synthesizer 820, Optimizer 840, or by substituting
canned routines (Locate Static Code 830) for specific vari-
ants of Operations 810. For example, multiplying or divid-
ing by a constant of one means that the multiplication or
division can be eliminated.

Vertex processing includes many cases of matrix-vector
multiplication, and the optimizations presented in the
matrix-vector multiplication example above may be used in
vertex processing.

Logical primitive setup stages. Primitive setup can be
broken into several stages, as depicted in FIG. 16. Stage
1601 assembles the vertices of the primitive, in the illustra-
tion a triangle. Stage 1602 performs back-face culling by
determining the winding order of the triangle’s vertices. This
stage is skipped for line and point primitives. Stage 1603
constructs a polygon covering the primitive’s fragments and
clips it against the visible region. Stage 1604 projects the
clipped polygon into screen space and scan-converts its
edges. Stage 1605 computes z and vertex attribute gradients.
A detailed description of the operations performed in stages
1603 and 1604 related to rasterization, together called the
rasterization stage, follows in the next section.

Primitive setup rasterization stage. The first step in ras-
terizing primitives is to construct a polygon covering their
fragments. Triangle primitives can use their vertex positions
directly as such a polygon. Line primitives require the
construction of a thick line shaped polygon surrounding the
line in screen space. One way to achieve this is to construct
a 1-pixel wide rectangle as depicted in FIGS. 18(a) and (b).
The white-filled circles connected by the dotted line repre-
sent the vertex positions in screen space. The black dots
represent the screen space positions of the newly constructed
polygon. In FIG. 18() every polygon edge is located at 0.5
pixel distance from the polygon, to avoid underdraw (miss-
ing pixels) in between connecting lines. To comply with the
industry-standard ‘grid-intersect quantization’ (or ‘GIQ’,

10

15

20

25

30

35

40

45

50

55

60

65

28

described in “The m-Dimensional Grid Point Space”, Rein-
hard Klette, Computer Vision Graphics Image Processing.
Vol. 30, pp. 1-12, 1985) rasterization rule using diamonds,
two 1-pixel sized diamonds have to be constructed in screen
space, centered around the line’s vertices, as depicted in
FIG. 18(c). The six points forming the convex hull of the
diamonds are used as the polygon for rasterization. Point
primitives require the construction of an axis-aligned square
polygon in screen space, centered on the point’s position.
The second step in rasterization consists of clipping the
constructed polygon using the Sutherland-Hodgman clip-
ping algorithm, against viewing frustum planes and optional
application-controlled clipping planes. The viewing frustum
and viewport scaling can be adjusted to provide viewport
and scissor clipping functionality. Only positions are
clipped; the constructed polygon does not include vertex
attribute data. The next step is to rasterize the outline of the
(clipped) polygon, and is illustrated in FIG. 17. For every
edge of the polygon (a pair of points), it is determined
whether it is on the left or right side of the polygon. For
every scanline 1703 intersecting the edge, the x-coordinate
of the intersection is computed, and stored in the left outline
array 1701 or right outline array 1702 depending on which
side the edge is located, at an index corresponding to the
scanline’s y-coordinate. For anti-aliasing purposes intersec-
tions can be computed at higher resolution. The intersections
can be computed efficiently using a variant of Bresenham’s
line drawing algorithm, the ‘digital differential analyzer’
(DDA) algorithm or a fixed-point or floating-point edge
stepping method. Together with the outline arrays the top
and bottom index where the polygon is located in the outline
arrays 1701 and 1702 is stored. The (clipped) polygon can
now be discarded. Gradient setup calculations use the origi-
nal vertices of the primitive. The outline arrays and top and
bottom indices can now be used by the interpolators to
determine coverage masks for pixels or groups of pixels: For
every fragment the coverage can be determined by compar-
ing it’s x-coordinate to the left and right outline arrays at the
index corresponding to the fragment’s y-coordinate. This
process can be done in parallel for a group of fragments.
Advantages of the whole rasterization algorithm compared
to prior art are the ability to clip every type of primitive to
viewport and scissor edges at an early stage, computing
fragment coverage at a lower per-fragment cost than using
half-space functions (as described in “Triangle Scan Con-
version using 2D Homogeneous Coordinates”, Marc Olano
and Trey Greer, Proceedings of the 1997 SIGGRAPH/
Eurographics Workshop on Graphics Hardware), and com-
puting coverage of groups of fragments in parallel on the
same processor and in parallel for multiple groups of frag-
ments on multiple processors.

Performance of the Graphics Pipeline. A graphics pipeline
implemented via the Parallel Task Engine 300 as described
above can keep multiple CPUs busy throughout every stage
of image rendering, from the original list of primitives to
display, to the final pixel frame buffer operations. This, in
concert with the previously described beneficial problem
decomposition, and dynamically generated context-specific
optimized code, as well as specific, novel graphics process-
ing algorithms detailed above, can give a super-linear accel-
eration of the rendering process when applied via this engine
to multiple CPUs.

While illustrated in the block diagrams as groups of
discrete components communicating with each other via
distinct data signal connections, it will be understood by
those skilled in the art that an embodiments are provided by
a combination of hardware and software components, with

US 9,436,451 B2

29

some components being implemented by a given function or
operation of a hardware or software system, and many of the
data paths illustrated being implemented by data communi-
cation within a computer application or operating system.
The structure illustrated is thus provided for efficiency of
teaching the present embodiment.

It should be noted that the present description is meant to
encompass embodiments including a method, a system, a
computer readable medium or an electrical or electro-mag-
netic signal.

The embodiments described above are intended to be
exemplary only. The scope of the description is therefore
intended to be limited solely by the scope of the appended
claims.

The invention claimed is:

1. In a computer system having a processor, the processor
having multiple processing cores, a parallel task engine for
performing tasks on data, the parallel task engine compris-
ing:

an input for receiving tasks;

a scheduler for decomposing the tasks at run-time into one

or more new tasks; and

a run-time dynamic code generator for generating, for the

new tasks, operation routines, the run-time dynamic
code generator comprising a dynamic compiler, the
dynamic compiler being adapted to output the opera-
tion routines for execution,

wherein the scheduler further is for distributing and

assigning the new tasks to multiple processing cores for
performing in parallel the new tasks on at least a
portion of the data by executing the dynamically com-
piled operation routines; and

wherein at least a portion of the scheduler operations of

decomposing the tasks and the distributing and assign-
ing the new tasks are dependent on operating charac-
teristics of the processor.

2. The parallel task engine of claim 1, wherein both the
decomposing the tasks and the distributing and assigning the
new tasks are dependent on operating characteristics of the
processor.

3. The parallel task engine of claim 2, wherein the
operating characteristic of the processor is the number of
processing cores.

4. The parallel task engine of claim 1, wherein the
scheduler makes run-time decomposition choices based on a
quality of the operation routines generated by the dynamic
compiler.

5. The parallel task engine of claim 4, wherein the quality
of the operation routines is determined by performing one or
more of: analysing the operation routines, measuring char-
acteristics of the operation routines, and obtaining statistics
about the operation routines from the dynamic compiler.

6. The parallel task engine of claim 1, wherein the
processor is a CPU.

7. The parallel task engine of claim 1, wherein the
decomposing is dependent on at least one policy selected
from a given set of policies, wherein the scheduler makes the
selection of the at least one policy as a function of charac-
teristics of the operation routines.

8. The parallel task engine of claim 7, wherein the
scheduler selects the policy for decomposition which yields
the highest estimated performance, based on an estimated
performance of the operation routines.

9. The parallel task engine of claim 7, wherein the given
set of policies includes:

decomposing a task into one or more new tasks by

partitioning the data on which the task is to be per-

15

20

25

30

35

40

45

50

55

60

30

formed into one or more subsets of that data, each new
task being responsible for performing the same opera-
tion as the original task on a corresponding data subset;

decomposing a task into one or more new tasks, each of
which performs a different operation than the original
task, but which performs this operation on the same
data set as the original task; and

decomposing a task into one or more new tasks, by

partitioning an individual datum of the data on which
the task is to be performed, into sub-components, each
new task creating one sub-component of each resulting
datum for all the data.

10. The parallel task engine of claim 1, wherein the
run-time dynamic code generator further comprises an opti-
mizer, the optimizer taking as input an operation routine
from the operation routines, or a pointer to an operation
routine from the operation routines, the optimizer producing
as output an output operation routine, or a pointer to the
output operation routine, which is semantically equivalent to
the operation routine at the input.

11. In a computer system having a processor, the proces-
sor having multiple processing cores, a method for perform-
ing tasks on data, the method comprising:

receiving tasks;

decomposing the tasks at run-time into one or more new

tasks;
generating for the new tasks at run-time, operation rou-
tines, the generating comprising outputting the opera-
tion routines for execution using a dynamic compiler;

distributing and assigning the new tasks to multiple
processing cores; and

the multiple processing cores performing the new tasks in

parallel on at least part of the data by executing the
operation routines;

wherein at least one of the decomposing the tasks and the

distributing and assigning the new tasks are dependent
on operating characteristics of the processor.
12. The method of claim 11, wherein both the decompos-
ing the tasks and the distributing and assigning the new tasks
are dependent on operating characteristics of the processor.
13. The computer system of claim 11, wherein the oper-
ating characteristic of the processor is the number of pro-
cessing cores.
14. The method of claim 11, wherein the processor is a
CPU.
15. The method of claim 11, wherein the decomposing is
dependent on at least one policy selected from a given set of
policies, the method further comprising making the selection
of the at least one policy as a function of characteristics of
the code.
16. The method of claim 15, further comprising selecting
the policy for decomposition which yields the highest esti-
mated performance, based on an estimated performance of
the operation routines.
17. The method of claim 11, wherein the decomposing the
tasks is performed according to at least one of the following
policies:
decomposing a task into one or more new tasks by
partitioning the data on which the task is to be per-
formed into one or more subsets of that data, each new
task being responsible for performing the same opera-
tion as the original task on a corresponding data subset;

decomposing a task into one or more new tasks, each of
which performs a different operation than the original
task, but which performs this operation on the same
data set as the original task; and

US 9,436,451 B2

31

decomposing a task into one or more new tasks, by
partitioning an individual datum of the data on which
the task is to be performed, into sub-components, each
new task creating one sub-component of each resulting
datum for all the data.

18. The method of claim 11, wherein the tasks comprise
graphics processing tasks for 3D objects defined as a col-
lection of geometric primitives, and wherein the decompos-
ing comprises decomposing the graphics processing tasks
into one or more new graphics processing tasks.

19. The method of claim 18, further comprising pixel
processing tasks which draw the 3D objects to a rendered
image, wherein the decomposing comprises decomposing
the pixel processing tasks into one or more new pixel
processing tasks whereby at least two of the new pixel
processing tasks contain fragments of non-overlapping
regions in the rendered image, and the new pixel processing
tasks are assigned to at least two job loops.

20. In a computer system having multiple processing
cores, a method for performing tasks on data, the method
comprising:

decomposing the tasks at run-time to create new tasks;

dynamically compiling code for the new tasks at run-time

using a dynamic code generator comprising a dynamic
compiler;

distributing and assigning the new tasks to two or more

processing cores for executing the dynamically com-
piled code, in parallel, for performing the new tasks on
at least a portion of the data;

wherein at least one of the decomposing the tasks and the

distributing and assigning the new tasks are dependent
on operating characteristics of the processor.

#* #* #* #* #*

10

15

20

25

30

32

